MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeu Structured version   Unicode version

Theorem eqeu 3231
Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.)
Hypothesis
Ref Expression
eqeu.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
eqeu  |-  ( ( A  e.  B  /\  ps  /\  A. x (
ph  ->  x  =  A ) )  ->  E! x ph )
Distinct variable groups:    ps, x    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem eqeu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeu.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21spcegv 3158 . . . 4  |-  ( A  e.  B  ->  ( ps  ->  E. x ph )
)
32imp 429 . . 3  |-  ( ( A  e.  B  /\  ps )  ->  E. x ph )
433adant3 1008 . 2  |-  ( ( A  e.  B  /\  ps  /\  A. x (
ph  ->  x  =  A ) )  ->  E. x ph )
5 eqeq2 2467 . . . . . . 7  |-  ( y  =  A  ->  (
x  =  y  <->  x  =  A ) )
65imbi2d 316 . . . . . 6  |-  ( y  =  A  ->  (
( ph  ->  x  =  y )  <->  ( ph  ->  x  =  A ) ) )
76albidv 1680 . . . . 5  |-  ( y  =  A  ->  ( A. x ( ph  ->  x  =  y )  <->  A. x
( ph  ->  x  =  A ) ) )
87spcegv 3158 . . . 4  |-  ( A  e.  B  ->  ( A. x ( ph  ->  x  =  A )  ->  E. y A. x (
ph  ->  x  =  y ) ) )
98imp 429 . . 3  |-  ( ( A  e.  B  /\  A. x ( ph  ->  x  =  A ) )  ->  E. y A. x
( ph  ->  x  =  y ) )
1093adant2 1007 . 2  |-  ( ( A  e.  B  /\  ps  /\  A. x (
ph  ->  x  =  A ) )  ->  E. y A. x ( ph  ->  x  =  y ) )
11 eu3v 2293 . 2  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
124, 10, 11sylanbrc 664 1  |-  ( ( A  e.  B  /\  ps  /\  A. x (
ph  ->  x  =  A ) )  ->  E! x ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 965   A.wal 1368    = wceq 1370   E.wex 1587    e. wcel 1758   E!weu 2261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-v 3074
This theorem is referenced by:  rngurd  26396  neibastop3  28726  upixp  28766
  Copyright terms: Public domain W3C validator