Step | Hyp | Ref
| Expression |
1 | | neibastop1.1 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
2 | | neibastop1.2 |
. . . 4
⊢ (𝜑 → 𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖
{∅})) |
3 | | neibastop1.3 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥) ∧ 𝑤 ∈ (𝐹‘𝑥))) → ((𝐹‘𝑥) ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅) |
4 | | neibastop1.4 |
. . . 4
⊢ 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅} |
5 | 1, 2, 3, 4 | neibastop1 31524 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
6 | | neibastop1.5 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → 𝑥 ∈ 𝑣) |
7 | | neibastop1.6 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → ∃𝑡 ∈ (𝐹‘𝑥)∀𝑦 ∈ 𝑡 ((𝐹‘𝑦) ∩ 𝒫 𝑣) ≠ ∅) |
8 | 1, 2, 3, 4, 6, 7 | neibastop2 31526 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑧}) ↔ (𝑛 ⊆ 𝑋 ∧ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅))) |
9 | | selpw 4115 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝒫 𝑋 ↔ 𝑛 ⊆ 𝑋) |
10 | 9 | anbi1i 727 |
. . . . . . . 8
⊢ ((𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅) ↔ (𝑛 ⊆ 𝑋 ∧ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅)) |
11 | 8, 10 | syl6bbr 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑧}) ↔ (𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅))) |
12 | 11 | abbi2dv 2729 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((nei‘𝐽)‘{𝑧}) = {𝑛 ∣ (𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅)}) |
13 | | df-rab 2905 |
. . . . . 6
⊢ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅} = {𝑛 ∣ (𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅)} |
14 | 12, 13 | syl6eqr 2662 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅}) |
15 | 14 | ralrimiva 2949 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅}) |
16 | | sneq 4135 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) |
17 | 16 | fveq2d 6107 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑧})) |
18 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
19 | 18 | ineq1d 3775 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ∩ 𝒫 𝑛) = ((𝐹‘𝑧) ∩ 𝒫 𝑛)) |
20 | 19 | neeq1d 2841 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅ ↔ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅)) |
21 | 20 | rabbidv 3164 |
. . . . . 6
⊢ (𝑥 = 𝑧 → {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅}) |
22 | 17, 21 | eqeq12d 2625 |
. . . . 5
⊢ (𝑥 = 𝑧 → (((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅})) |
23 | 22 | cbvralv 3147 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ∀𝑧 ∈ 𝑋 ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅}) |
24 | 15, 23 | sylibr 223 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) |
25 | | toponuni 20542 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝑗) |
26 | | eqimss2 3621 |
. . . . . . . . . 10
⊢ (𝑋 = ∪
𝑗 → ∪ 𝑗
⊆ 𝑋) |
27 | 25, 26 | syl 17 |
. . . . . . . . 9
⊢ (𝑗 ∈ (TopOn‘𝑋) → ∪ 𝑗
⊆ 𝑋) |
28 | | sspwuni 4547 |
. . . . . . . . 9
⊢ (𝑗 ⊆ 𝒫 𝑋 ↔ ∪ 𝑗
⊆ 𝑋) |
29 | 27, 28 | sylibr 223 |
. . . . . . . 8
⊢ (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ⊆ 𝒫 𝑋) |
30 | 29 | ad2antlr 759 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 ⊆ 𝒫 𝑋) |
31 | | sseqin2 3779 |
. . . . . . 7
⊢ (𝑗 ⊆ 𝒫 𝑋 ↔ (𝒫 𝑋 ∩ 𝑗) = 𝑗) |
32 | 30, 31 | sylib 207 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → (𝒫 𝑋 ∩ 𝑗) = 𝑗) |
33 | | topontop 20541 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ∈ Top) |
34 | 33 | ad3antlr 763 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → 𝑗 ∈ Top) |
35 | | eltop2 20590 |
. . . . . . . . . 10
⊢ (𝑗 ∈ Top → (𝑜 ∈ 𝑗 ↔ ∀𝑥 ∈ 𝑜 ∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜))) |
36 | 34, 35 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → (𝑜 ∈ 𝑗 ↔ ∀𝑥 ∈ 𝑜 ∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜))) |
37 | | elpwi 4117 |
. . . . . . . . . . . . . . 15
⊢ (𝑜 ∈ 𝒫 𝑋 → 𝑜 ⊆ 𝑋) |
38 | | ssralv 3629 |
. . . . . . . . . . . . . . 15
⊢ (𝑜 ⊆ 𝑋 → (∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥 ∈ 𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑜 ∈ 𝒫 𝑋 → (∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥 ∈ 𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
40 | 39 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥 ∈ 𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
41 | | simprr 792 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) |
42 | 41 | eleq2d 2673 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ 𝑜 ∈ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
43 | 33 | ad3antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → 𝑗 ∈ Top) |
44 | 25 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) → 𝑋 = ∪ 𝑗) |
45 | 44 | sseq2d 3596 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) → (𝑜 ⊆ 𝑋 ↔ 𝑜 ⊆ ∪ 𝑗)) |
46 | 45 | biimpa 500 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ⊆ 𝑋) → 𝑜 ⊆ ∪ 𝑗) |
47 | 37, 46 | sylan2 490 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → 𝑜 ⊆ ∪ 𝑗) |
48 | 47 | sselda 3568 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ 𝑥 ∈ 𝑜) → 𝑥 ∈ ∪ 𝑗) |
49 | 48 | adantrr 749 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → 𝑥 ∈ ∪ 𝑗) |
50 | 47 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → 𝑜 ⊆ ∪ 𝑗) |
51 | | eqid 2610 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ 𝑗 =
∪ 𝑗 |
52 | 51 | isneip 20719 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ Top ∧ 𝑥 ∈ ∪ 𝑗)
→ (𝑜 ∈
((nei‘𝑗)‘{𝑥}) ↔ (𝑜 ⊆ ∪ 𝑗 ∧ ∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜)))) |
53 | 52 | baibd 946 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑗 ∈ Top ∧ 𝑥 ∈ ∪ 𝑗)
∧ 𝑜 ⊆ ∪ 𝑗)
→ (𝑜 ∈
((nei‘𝑗)‘{𝑥}) ↔ ∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜))) |
54 | 43, 49, 50, 53 | syl21anc 1317 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ ∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜))) |
55 | | pweq 4111 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑜 → 𝒫 𝑛 = 𝒫 𝑜) |
56 | 55 | ineq2d 3776 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑜 → ((𝐹‘𝑥) ∩ 𝒫 𝑛) = ((𝐹‘𝑥) ∩ 𝒫 𝑜)) |
57 | 56 | neeq1d 2841 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑜 → (((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅ ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
58 | 57 | elrab3 3332 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑜 ∈ 𝒫 𝑋 → (𝑜 ∈ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
59 | 58 | ad2antlr 759 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (𝑜 ∈ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
60 | 42, 54, 59 | 3bitr3d 297 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
61 | 60 | expr 641 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ 𝑥 ∈ 𝑜) → (((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} → (∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅))) |
62 | 61 | ralimdva 2945 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥 ∈ 𝑜 (∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅))) |
63 | 40, 62 | syld 46 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥 ∈ 𝑜 (∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅))) |
64 | 63 | imp 444 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → ∀𝑥 ∈ 𝑜 (∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
65 | 64 | an32s 842 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → ∀𝑥 ∈ 𝑜 (∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
66 | | ralbi 3050 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝑜 (∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅) → (∀𝑥 ∈ 𝑜 ∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
67 | 65, 66 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑜 ∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
68 | 36, 67 | bitrd 267 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → (𝑜 ∈ 𝑗 ↔ ∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
69 | 68 | rabbi2dva 3783 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → (𝒫 𝑋 ∩ 𝑗) = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅}) |
70 | 69, 4 | syl6eqr 2662 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → (𝒫 𝑋 ∩ 𝑗) = 𝐽) |
71 | 32, 70 | eqtr3d 2646 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽) |
72 | 71 | expl 646 |
. . . 4
⊢ (𝜑 → ((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽)) |
73 | 72 | alrimiv 1842 |
. . 3
⊢ (𝜑 → ∀𝑗((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽)) |
74 | | eleq1 2676 |
. . . . 5
⊢ (𝑗 = 𝐽 → (𝑗 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ (TopOn‘𝑋))) |
75 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → (nei‘𝑗) = (nei‘𝐽)) |
76 | 75 | fveq1d 6105 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥})) |
77 | 76 | eqeq1d 2612 |
. . . . . 6
⊢ (𝑗 = 𝐽 → (((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
78 | 77 | ralbidv 2969 |
. . . . 5
⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ∀𝑥 ∈ 𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
79 | 74, 78 | anbi12d 743 |
. . . 4
⊢ (𝑗 = 𝐽 → ((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ↔ (𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}))) |
80 | 79 | eqeu 3344 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ ∀𝑗((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽)) → ∃!𝑗(𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
81 | 5, 5, 24, 73, 80 | syl121anc 1323 |
. 2
⊢ (𝜑 → ∃!𝑗(𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
82 | | df-reu 2903 |
. 2
⊢
(∃!𝑗 ∈
(TopOn‘𝑋)∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ∃!𝑗(𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
83 | 81, 82 | sylibr 223 |
1
⊢ (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) |