Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop3 Structured version   Visualization version   GIF version

Theorem neibastop3 31527
Description: The topology generated by a neighborhood base is unique. (Contributed by Jeff Hankins, 16-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
neibastop1.1 (𝜑𝑋𝑉)
neibastop1.2 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
neibastop1.3 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
neibastop1.4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
neibastop1.5 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
neibastop1.6 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
Assertion
Ref Expression
neibastop3 (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})
Distinct variable groups:   𝑡,𝑛,𝑣,𝑦,𝑗,𝑥   𝑗,𝐽   𝑥,𝑛,𝐽,𝑣,𝑦   𝑡,𝑜,𝑣,𝑤,𝑥,𝑦,𝑗,𝐹,𝑛   𝜑,𝑗,𝑛,𝑜,𝑡,𝑣,𝑤,𝑥,𝑦   𝑗,𝑋,𝑛,𝑜,𝑡,𝑣,𝑤,𝑥,𝑦
Allowed substitution hints:   𝐽(𝑤,𝑡,𝑜)   𝑉(𝑥,𝑦,𝑤,𝑣,𝑡,𝑗,𝑛,𝑜)

Proof of Theorem neibastop3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 neibastop1.1 . . . 4 (𝜑𝑋𝑉)
2 neibastop1.2 . . . 4 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
3 neibastop1.3 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
4 neibastop1.4 . . . 4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
51, 2, 3, 4neibastop1 31524 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 neibastop1.5 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
7 neibastop1.6 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
81, 2, 3, 4, 6, 7neibastop2 31526 . . . . . . . 8 ((𝜑𝑧𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑧}) ↔ (𝑛𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅)))
9 selpw 4115 . . . . . . . . 9 (𝑛 ∈ 𝒫 𝑋𝑛𝑋)
109anbi1i 727 . . . . . . . 8 ((𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅) ↔ (𝑛𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅))
118, 10syl6bbr 277 . . . . . . 7 ((𝜑𝑧𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑧}) ↔ (𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅)))
1211abbi2dv 2729 . . . . . 6 ((𝜑𝑧𝑋) → ((nei‘𝐽)‘{𝑧}) = {𝑛 ∣ (𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅)})
13 df-rab 2905 . . . . . 6 {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅} = {𝑛 ∣ (𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅)}
1412, 13syl6eqr 2662 . . . . 5 ((𝜑𝑧𝑋) → ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅})
1514ralrimiva 2949 . . . 4 (𝜑 → ∀𝑧𝑋 ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅})
16 sneq 4135 . . . . . . 7 (𝑥 = 𝑧 → {𝑥} = {𝑧})
1716fveq2d 6107 . . . . . 6 (𝑥 = 𝑧 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑧}))
18 fveq2 6103 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1918ineq1d 3775 . . . . . . . 8 (𝑥 = 𝑧 → ((𝐹𝑥) ∩ 𝒫 𝑛) = ((𝐹𝑧) ∩ 𝒫 𝑛))
2019neeq1d 2841 . . . . . . 7 (𝑥 = 𝑧 → (((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅ ↔ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅))
2120rabbidv 3164 . . . . . 6 (𝑥 = 𝑧 → {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅})
2217, 21eqeq12d 2625 . . . . 5 (𝑥 = 𝑧 → (((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅}))
2322cbvralv 3147 . . . 4 (∀𝑥𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ∀𝑧𝑋 ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅})
2415, 23sylibr 223 . . 3 (𝜑 → ∀𝑥𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})
25 toponuni 20542 . . . . . . . . . 10 (𝑗 ∈ (TopOn‘𝑋) → 𝑋 = 𝑗)
26 eqimss2 3621 . . . . . . . . . 10 (𝑋 = 𝑗 𝑗𝑋)
2725, 26syl 17 . . . . . . . . 9 (𝑗 ∈ (TopOn‘𝑋) → 𝑗𝑋)
28 sspwuni 4547 . . . . . . . . 9 (𝑗 ⊆ 𝒫 𝑋 𝑗𝑋)
2927, 28sylibr 223 . . . . . . . 8 (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ⊆ 𝒫 𝑋)
3029ad2antlr 759 . . . . . . 7 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 ⊆ 𝒫 𝑋)
31 sseqin2 3779 . . . . . . 7 (𝑗 ⊆ 𝒫 𝑋 ↔ (𝒫 𝑋𝑗) = 𝑗)
3230, 31sylib 207 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → (𝒫 𝑋𝑗) = 𝑗)
33 topontop 20541 . . . . . . . . . . 11 (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ∈ Top)
3433ad3antlr 763 . . . . . . . . . 10 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → 𝑗 ∈ Top)
35 eltop2 20590 . . . . . . . . . 10 (𝑗 ∈ Top → (𝑜𝑗 ↔ ∀𝑥𝑜𝑧𝑗 (𝑥𝑧𝑧𝑜)))
3634, 35syl 17 . . . . . . . . 9 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → (𝑜𝑗 ↔ ∀𝑥𝑜𝑧𝑗 (𝑥𝑧𝑧𝑜)))
37 elpwi 4117 . . . . . . . . . . . . . . 15 (𝑜 ∈ 𝒫 𝑋𝑜𝑋)
38 ssralv 3629 . . . . . . . . . . . . . . 15 (𝑜𝑋 → (∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
3937, 38syl 17 . . . . . . . . . . . . . 14 (𝑜 ∈ 𝒫 𝑋 → (∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
4039adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
41 simprr 792 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})
4241eleq2d 2673 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ 𝑜 ∈ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
4333ad3antlr 763 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → 𝑗 ∈ Top)
4425adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (TopOn‘𝑋)) → 𝑋 = 𝑗)
4544sseq2d 3596 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (TopOn‘𝑋)) → (𝑜𝑋𝑜 𝑗))
4645biimpa 500 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜𝑋) → 𝑜 𝑗)
4737, 46sylan2 490 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → 𝑜 𝑗)
4847sselda 3568 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ 𝑥𝑜) → 𝑥 𝑗)
4948adantrr 749 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → 𝑥 𝑗)
5047adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → 𝑜 𝑗)
51 eqid 2610 . . . . . . . . . . . . . . . . . . 19 𝑗 = 𝑗
5251isneip 20719 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ Top ∧ 𝑥 𝑗) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ (𝑜 𝑗 ∧ ∃𝑧𝑗 (𝑥𝑧𝑧𝑜))))
5352baibd 946 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ Top ∧ 𝑥 𝑗) ∧ 𝑜 𝑗) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ ∃𝑧𝑗 (𝑥𝑧𝑧𝑜)))
5443, 49, 50, 53syl21anc 1317 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ ∃𝑧𝑗 (𝑥𝑧𝑧𝑜)))
55 pweq 4111 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑜 → 𝒫 𝑛 = 𝒫 𝑜)
5655ineq2d 3776 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑜 → ((𝐹𝑥) ∩ 𝒫 𝑛) = ((𝐹𝑥) ∩ 𝒫 𝑜))
5756neeq1d 2841 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑜 → (((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
5857elrab3 3332 . . . . . . . . . . . . . . . . 17 (𝑜 ∈ 𝒫 𝑋 → (𝑜 ∈ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
5958ad2antlr 759 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (𝑜 ∈ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6042, 54, 593bitr3d 297 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6160expr 641 . . . . . . . . . . . . . 14 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ 𝑥𝑜) → (((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅)))
6261ralimdva 2945 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥𝑜 (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅)))
6340, 62syld 46 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥𝑜 (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅)))
6463imp 444 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → ∀𝑥𝑜 (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6564an32s 842 . . . . . . . . . 10 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → ∀𝑥𝑜 (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
66 ralbi 3050 . . . . . . . . . 10 (∀𝑥𝑜 (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅) → (∀𝑥𝑜𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6765, 66syl 17 . . . . . . . . 9 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥𝑜𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6836, 67bitrd 267 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → (𝑜𝑗 ↔ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6968rabbi2dva 3783 . . . . . . 7 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → (𝒫 𝑋𝑗) = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅})
7069, 4syl6eqr 2662 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → (𝒫 𝑋𝑗) = 𝐽)
7132, 70eqtr3d 2646 . . . . 5 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽)
7271expl 646 . . . 4 (𝜑 → ((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽))
7372alrimiv 1842 . . 3 (𝜑 → ∀𝑗((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽))
74 eleq1 2676 . . . . 5 (𝑗 = 𝐽 → (𝑗 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ (TopOn‘𝑋)))
75 fveq2 6103 . . . . . . . 8 (𝑗 = 𝐽 → (nei‘𝑗) = (nei‘𝐽))
7675fveq1d 6105 . . . . . . 7 (𝑗 = 𝐽 → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥}))
7776eqeq1d 2612 . . . . . 6 (𝑗 = 𝐽 → (((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
7877ralbidv 2969 . . . . 5 (𝑗 = 𝐽 → (∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ∀𝑥𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
7974, 78anbi12d 743 . . . 4 (𝑗 = 𝐽 → ((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ↔ (𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})))
8079eqeu 3344 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ ∀𝑗((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽)) → ∃!𝑗(𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
815, 5, 24, 73, 80syl121anc 1323 . 2 (𝜑 → ∃!𝑗(𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
82 df-reu 2903 . 2 (∃!𝑗 ∈ (TopOn‘𝑋)∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ∃!𝑗(𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
8381, 82sylibr 223 1 (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  ∃!weu 2458  {cab 2596  wne 2780  wral 2896  wrex 2897  ∃!wreu 2898  {crab 2900  cdif 3537  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   cuni 4372  wf 5800  cfv 5804  Topctop 20517  TopOnctopon 20518  neicnei 20711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-topgen 15927  df-top 20521  df-topon 20523  df-nei 20712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator