MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxnn0 Structured version   Visualization version   GIF version

Theorem elxnn0 11242
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 11241 . . 3 0* = (ℕ0 ∪ {+∞})
21eleq2i 2680 . 2 (𝐴 ∈ ℕ0*𝐴 ∈ (ℕ0 ∪ {+∞}))
3 elun 3715 . 2 (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 ∈ {+∞}))
4 pnfex 9972 . . . 4 +∞ ∈ V
54elsn2 4158 . . 3 (𝐴 ∈ {+∞} ↔ 𝐴 = +∞)
65orbi2i 540 . 2 ((𝐴 ∈ ℕ0𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
72, 3, 63bitri 285 1 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wo 382   = wceq 1475  wcel 1977  cun 3538  {csn 4125  +∞cpnf 9950  0cn0 11169  0*cxnn0 11240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-pow 4769  ax-un 6847  ax-cnex 9871
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-v 3175  df-un 3545  df-in 3547  df-ss 3554  df-pw 4110  df-sn 4126  df-pr 4128  df-uni 4373  df-pnf 9955  df-xr 9957  df-xnn0 11241
This theorem is referenced by:  xnn0xr  11245  pnf0xnn0  11247  xnn0nemnf  11251  xnn0nnn0pnf  11253  xnn0n0n1ge2b  11841  xnn0ge0  11843  xnn0xadd0  11949  xnn0xrge0  12196  tayl0  23920
  Copyright terms: Public domain W3C validator