Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ssxnn0 Structured version   Visualization version   GIF version

Theorem nn0ssxnn0 11243
 Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0ssxnn0 0 ⊆ ℕ0*

Proof of Theorem nn0ssxnn0
StepHypRef Expression
1 ssun1 3738 . 2 0 ⊆ (ℕ0 ∪ {+∞})
2 df-xnn0 11241 . 2 0* = (ℕ0 ∪ {+∞})
31, 2sseqtr4i 3601 1 0 ⊆ ℕ0*
 Colors of variables: wff setvar class Syntax hints:   ∪ cun 3538   ⊆ wss 3540  {csn 4125  +∞cpnf 9950  ℕ0cn0 11169  ℕ0*cxnn0 11240 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-un 3545  df-in 3547  df-ss 3554  df-xnn0 11241 This theorem is referenced by:  nn0xnn0  11244  0xnn0  11246  nn0xnn0d  11249
 Copyright terms: Public domain W3C validator