MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0n0n1ge2b Structured version   Visualization version   GIF version

Theorem xnn0n0n1ge2b 11841
Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021.)
Assertion
Ref Expression
xnn0n0n1ge2b (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))

Proof of Theorem xnn0n0n1ge2b
StepHypRef Expression
1 elxnn0 11242 . 2 (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
2 nn0n0n1ge2b 11236 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
3 0nn0 11184 . . . . . . . 8 0 ∈ ℕ0
4 nn0nepnf 11248 . . . . . . . 8 (0 ∈ ℕ0 → 0 ≠ +∞)
53, 4ax-mp 5 . . . . . . 7 0 ≠ +∞
65necomi 2836 . . . . . 6 +∞ ≠ 0
7 neeq1 2844 . . . . . 6 (𝑁 = +∞ → (𝑁 ≠ 0 ↔ +∞ ≠ 0))
86, 7mpbiri 247 . . . . 5 (𝑁 = +∞ → 𝑁 ≠ 0)
9 1nn0 11185 . . . . . . . 8 1 ∈ ℕ0
10 nn0nepnf 11248 . . . . . . . 8 (1 ∈ ℕ0 → 1 ≠ +∞)
119, 10ax-mp 5 . . . . . . 7 1 ≠ +∞
1211necomi 2836 . . . . . 6 +∞ ≠ 1
13 neeq1 2844 . . . . . 6 (𝑁 = +∞ → (𝑁 ≠ 1 ↔ +∞ ≠ 1))
1412, 13mpbiri 247 . . . . 5 (𝑁 = +∞ → 𝑁 ≠ 1)
158, 14jca 553 . . . 4 (𝑁 = +∞ → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1))
16 2re 10967 . . . . . . 7 2 ∈ ℝ
1716rexri 9976 . . . . . 6 2 ∈ ℝ*
18 pnfge 11840 . . . . . 6 (2 ∈ ℝ* → 2 ≤ +∞)
1917, 18ax-mp 5 . . . . 5 2 ≤ +∞
20 breq2 4587 . . . . 5 (𝑁 = +∞ → (2 ≤ 𝑁 ↔ 2 ≤ +∞))
2119, 20mpbiri 247 . . . 4 (𝑁 = +∞ → 2 ≤ 𝑁)
2215, 212thd 254 . . 3 (𝑁 = +∞ → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
232, 22jaoi 393 . 2 ((𝑁 ∈ ℕ0𝑁 = +∞) → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
241, 23sylbi 206 1 (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  0cc0 9815  1c1 9816  +∞cpnf 9950  *cxr 9952  cle 9954  2c2 10947  0cn0 11169  0*cxnn0 11240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241
This theorem is referenced by:  vdgfrgrgt2  41468
  Copyright terms: Public domain W3C validator