Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elwlimOLD Structured version   Visualization version   GIF version

Theorem elwlimOLD 31014
 Description: Membership in the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) Obsolete version of elwlim 31013 as of 10-Oct-2021. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
elwlimOLD (𝑋 ∈ WLimOLD(𝑅, 𝐴) ↔ (𝑋𝐴𝑋 ≠ sup(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))

Proof of Theorem elwlimOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neeq1 2844 . . . 4 (𝑥 = 𝑋 → (𝑥 ≠ sup(𝐴, 𝐴, 𝑅) ↔ 𝑋 ≠ sup(𝐴, 𝐴, 𝑅)))
2 id 22 . . . . 5 (𝑥 = 𝑋𝑥 = 𝑋)
3 predeq3 5601 . . . . . 6 (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋))
43supeq1d 8235 . . . . 5 (𝑥 = 𝑋 → sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))
52, 4eqeq12d 2625 . . . 4 (𝑥 = 𝑋 → (𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) ↔ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))
61, 5anbi12d 743 . . 3 (𝑥 = 𝑋 → ((𝑥 ≠ sup(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅)) ↔ (𝑋 ≠ sup(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))))
7 df-wlimOLD 31003 . . 3 WLimOLD(𝑅, 𝐴) = {𝑥𝐴 ∣ (𝑥 ≠ sup(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))}
86, 7elrab2 3333 . 2 (𝑋 ∈ WLimOLD(𝑅, 𝐴) ↔ (𝑋𝐴 ∧ (𝑋 ≠ sup(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))))
9 3anass 1035 . 2 ((𝑋𝐴𝑋 ≠ sup(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)) ↔ (𝑋𝐴 ∧ (𝑋 ≠ sup(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))))
108, 9bitr4i 266 1 (𝑋 ∈ WLimOLD(𝑅, 𝐴) ↔ (𝑋𝐴𝑋 ≠ sup(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ◡ccnv 5037  Predcpred 5596  supcsup 8229  WLimOLDcwlimOLD 30999 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-sup 8231  df-wlimOLD 31003 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator