Detailed syntax breakdown of Definition df-wlimOLD
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | | cR |
. . 3
class 𝑅 |
3 | 1, 2 | cwlimOLD 30999 |
. 2
class
WLimOLD(𝑅, 𝐴) |
4 | | vx |
. . . . . 6
setvar 𝑥 |
5 | 4 | cv 1474 |
. . . . 5
class 𝑥 |
6 | 2 | ccnv 5037 |
. . . . . 6
class ◡𝑅 |
7 | 1, 1, 6 | csup 8229 |
. . . . 5
class sup(𝐴, 𝐴, ◡𝑅) |
8 | 5, 7 | wne 2780 |
. . . 4
wff 𝑥 ≠ sup(𝐴, 𝐴, ◡𝑅) |
9 | 1, 2, 5 | cpred 5596 |
. . . . . 6
class
Pred(𝑅, 𝐴, 𝑥) |
10 | 9, 1, 2 | csup 8229 |
. . . . 5
class
sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) |
11 | 5, 10 | wceq 1475 |
. . . 4
wff 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) |
12 | 8, 11 | wa 383 |
. . 3
wff (𝑥 ≠ sup(𝐴, 𝐴, ◡𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅)) |
13 | 12, 4, 1 | crab 2900 |
. 2
class {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ sup(𝐴, 𝐴, ◡𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} |
14 | 3, 13 | wceq 1475 |
1
wff
WLimOLD(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ sup(𝐴, 𝐴, ◡𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} |