MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmrexrnb Structured version   Visualization version   GIF version

Theorem eldmrexrnb 6274
Description: For any element in the domain of a function, there is an element in the range of the function which is the value of the function at that element. Because of the definition df-fv 5812 of the value of a function, the theorem is only valid in general if the empty set is not contained in the range of the function (the implication "to the right" is always valid). Indeed, with the definition df-fv 5812 of the value of a function, (𝐹𝑌) = ∅ may mean that the value of 𝐹 at 𝑌 is the empty set or that 𝐹 is not defined at 𝑌. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
Assertion
Ref Expression
eldmrexrnb ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑌

Proof of Theorem eldmrexrnb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldmrexrn 6273 . . 3 (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
21adantr 480 . 2 ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
3 eleq1 2676 . . . . 5 (𝑥 = (𝐹𝑌) → (𝑥 ∈ ran 𝐹 ↔ (𝐹𝑌) ∈ ran 𝐹))
4 elnelne2 2894 . . . . . . . . 9 (((𝐹𝑌) ∈ ran 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝐹𝑌) ≠ ∅)
5 n0 3890 . . . . . . . . . 10 ((𝐹𝑌) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹𝑌))
6 elfvdm 6130 . . . . . . . . . . 11 (𝑦 ∈ (𝐹𝑌) → 𝑌 ∈ dom 𝐹)
76exlimiv 1845 . . . . . . . . . 10 (∃𝑦 𝑦 ∈ (𝐹𝑌) → 𝑌 ∈ dom 𝐹)
85, 7sylbi 206 . . . . . . . . 9 ((𝐹𝑌) ≠ ∅ → 𝑌 ∈ dom 𝐹)
94, 8syl 17 . . . . . . . 8 (((𝐹𝑌) ∈ ran 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹)
109expcom 450 . . . . . . 7 (∅ ∉ ran 𝐹 → ((𝐹𝑌) ∈ ran 𝐹𝑌 ∈ dom 𝐹))
1110adantl 481 . . . . . 6 ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → ((𝐹𝑌) ∈ ran 𝐹𝑌 ∈ dom 𝐹))
1211com12 32 . . . . 5 ((𝐹𝑌) ∈ ran 𝐹 → ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹))
133, 12syl6bi 242 . . . 4 (𝑥 = (𝐹𝑌) → (𝑥 ∈ ran 𝐹 → ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹)))
1413com13 86 . . 3 ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑥 ∈ ran 𝐹 → (𝑥 = (𝐹𝑌) → 𝑌 ∈ dom 𝐹)))
1514rexlimdv 3012 . 2 ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌) → 𝑌 ∈ dom 𝐹))
162, 15impbid 201 1 ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wnel 2781  wrex 2897  c0 3874  dom cdm 5038  ran crn 5039  Fun wfun 5798  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator