Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elnelne2 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
elnelne2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∉ 𝐶) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 2783 | . 2 ⊢ (𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶) | |
2 | nelne2 2879 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) | |
3 | 1, 2 | sylan2b 491 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∉ 𝐶) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∈ wcel 1977 ≠ wne 2780 ∉ wnel 2781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 df-cleq 2603 df-clel 2606 df-ne 2782 df-nel 2783 |
This theorem is referenced by: nelrnfvne 6261 eldmrexrnb 6274 absprodnn 15169 afv0nbfvbi 39880 2zrngnmlid 41739 2zrngnmrid 41740 |
Copyright terms: Public domain | W3C validator |