MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmnvl Structured version   Visualization version   GIF version

Theorem efgmnvl 17950
Description: The inversion function on the generators is an involution. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypothesis
Ref Expression
efgmval.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
Assertion
Ref Expression
efgmnvl (𝐴 ∈ (𝐼 × 2𝑜) → (𝑀‘(𝑀𝐴)) = 𝐴)
Distinct variable group:   𝑦,𝑧,𝐼
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem efgmnvl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 5056 . 2 (𝐴 ∈ (𝐼 × 2𝑜) ↔ ∃𝑎𝐼𝑏 ∈ 2𝑜 𝐴 = ⟨𝑎, 𝑏⟩)
2 efgmval.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
32efgmval 17948 . . . . . . 7 ((𝑎𝐼𝑏 ∈ 2𝑜) → (𝑎𝑀𝑏) = ⟨𝑎, (1𝑜𝑏)⟩)
43fveq2d 6107 . . . . . 6 ((𝑎𝐼𝑏 ∈ 2𝑜) → (𝑀‘(𝑎𝑀𝑏)) = (𝑀‘⟨𝑎, (1𝑜𝑏)⟩))
5 df-ov 6552 . . . . . 6 (𝑎𝑀(1𝑜𝑏)) = (𝑀‘⟨𝑎, (1𝑜𝑏)⟩)
64, 5syl6eqr 2662 . . . . 5 ((𝑎𝐼𝑏 ∈ 2𝑜) → (𝑀‘(𝑎𝑀𝑏)) = (𝑎𝑀(1𝑜𝑏)))
7 2oconcl 7470 . . . . . 6 (𝑏 ∈ 2𝑜 → (1𝑜𝑏) ∈ 2𝑜)
82efgmval 17948 . . . . . 6 ((𝑎𝐼 ∧ (1𝑜𝑏) ∈ 2𝑜) → (𝑎𝑀(1𝑜𝑏)) = ⟨𝑎, (1𝑜 ∖ (1𝑜𝑏))⟩)
97, 8sylan2 490 . . . . 5 ((𝑎𝐼𝑏 ∈ 2𝑜) → (𝑎𝑀(1𝑜𝑏)) = ⟨𝑎, (1𝑜 ∖ (1𝑜𝑏))⟩)
10 1on 7454 . . . . . . . . . . 11 1𝑜 ∈ On
1110onordi 5749 . . . . . . . . . 10 Ord 1𝑜
12 ordtr 5654 . . . . . . . . . 10 (Ord 1𝑜 → Tr 1𝑜)
13 trsucss 5728 . . . . . . . . . 10 (Tr 1𝑜 → (𝑏 ∈ suc 1𝑜𝑏 ⊆ 1𝑜))
1411, 12, 13mp2b 10 . . . . . . . . 9 (𝑏 ∈ suc 1𝑜𝑏 ⊆ 1𝑜)
15 df-2o 7448 . . . . . . . . 9 2𝑜 = suc 1𝑜
1614, 15eleq2s 2706 . . . . . . . 8 (𝑏 ∈ 2𝑜𝑏 ⊆ 1𝑜)
1716adantl 481 . . . . . . 7 ((𝑎𝐼𝑏 ∈ 2𝑜) → 𝑏 ⊆ 1𝑜)
18 dfss4 3820 . . . . . . 7 (𝑏 ⊆ 1𝑜 ↔ (1𝑜 ∖ (1𝑜𝑏)) = 𝑏)
1917, 18sylib 207 . . . . . 6 ((𝑎𝐼𝑏 ∈ 2𝑜) → (1𝑜 ∖ (1𝑜𝑏)) = 𝑏)
2019opeq2d 4347 . . . . 5 ((𝑎𝐼𝑏 ∈ 2𝑜) → ⟨𝑎, (1𝑜 ∖ (1𝑜𝑏))⟩ = ⟨𝑎, 𝑏⟩)
216, 9, 203eqtrd 2648 . . . 4 ((𝑎𝐼𝑏 ∈ 2𝑜) → (𝑀‘(𝑎𝑀𝑏)) = ⟨𝑎, 𝑏⟩)
22 fveq2 6103 . . . . . . 7 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀𝐴) = (𝑀‘⟨𝑎, 𝑏⟩))
23 df-ov 6552 . . . . . . 7 (𝑎𝑀𝑏) = (𝑀‘⟨𝑎, 𝑏⟩)
2422, 23syl6eqr 2662 . . . . . 6 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀𝐴) = (𝑎𝑀𝑏))
2524fveq2d 6107 . . . . 5 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀‘(𝑀𝐴)) = (𝑀‘(𝑎𝑀𝑏)))
26 id 22 . . . . 5 (𝐴 = ⟨𝑎, 𝑏⟩ → 𝐴 = ⟨𝑎, 𝑏⟩)
2725, 26eqeq12d 2625 . . . 4 (𝐴 = ⟨𝑎, 𝑏⟩ → ((𝑀‘(𝑀𝐴)) = 𝐴 ↔ (𝑀‘(𝑎𝑀𝑏)) = ⟨𝑎, 𝑏⟩))
2821, 27syl5ibrcom 236 . . 3 ((𝑎𝐼𝑏 ∈ 2𝑜) → (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀‘(𝑀𝐴)) = 𝐴))
2928rexlimivv 3018 . 2 (∃𝑎𝐼𝑏 ∈ 2𝑜 𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀‘(𝑀𝐴)) = 𝐴)
301, 29sylbi 206 1 (𝐴 ∈ (𝐼 × 2𝑜) → (𝑀‘(𝑀𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wrex 2897  cdif 3537  wss 3540  cop 4131  Tr wtr 4680   × cxp 5036  Ord word 5639  suc csuc 5642  cfv 5804  (class class class)co 6549  cmpt2 6551  1𝑜c1o 7440  2𝑜c2o 7441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1o 7447  df-2o 7448
This theorem is referenced by:  efginvrel1  17964  efgredlemc  17981
  Copyright terms: Public domain W3C validator