Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerval Structured version   Visualization version   GIF version

Theorem dirkerval 38984
Description: The Nth Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dirkerval.1 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Assertion
Ref Expression
dirkerval (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Distinct variable groups:   𝑁,𝑠   𝑛,𝑠
Allowed substitution hints:   𝐷(𝑛,𝑠)   𝑁(𝑛)

Proof of Theorem dirkerval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . . . . 7 ((𝑚 = 𝑁𝑠 ∈ ℝ) → 𝑚 = 𝑁)
21oveq2d 6565 . . . . . 6 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (2 · 𝑚) = (2 · 𝑁))
32oveq1d 6564 . . . . 5 ((𝑚 = 𝑁𝑠 ∈ ℝ) → ((2 · 𝑚) + 1) = ((2 · 𝑁) + 1))
43oveq1d 6564 . . . 4 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (((2 · 𝑚) + 1) / (2 · π)) = (((2 · 𝑁) + 1) / (2 · π)))
51oveq1d 6564 . . . . . . 7 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (𝑚 + (1 / 2)) = (𝑁 + (1 / 2)))
65oveq1d 6564 . . . . . 6 ((𝑚 = 𝑁𝑠 ∈ ℝ) → ((𝑚 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑠))
76fveq2d 6107 . . . . 5 ((𝑚 = 𝑁𝑠 ∈ ℝ) → (sin‘((𝑚 + (1 / 2)) · 𝑠)) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
87oveq1d 6564 . . . 4 ((𝑚 = 𝑁𝑠 ∈ ℝ) → ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
94, 8ifeq12d 4056 . . 3 ((𝑚 = 𝑁𝑠 ∈ ℝ) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
109mpteq2dva 4672 . 2 (𝑚 = 𝑁 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
11 dirkerval.1 . . 3 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
12 simpl 472 . . . . . . . . 9 ((𝑛 = 𝑚𝑠 ∈ ℝ) → 𝑛 = 𝑚)
1312oveq2d 6565 . . . . . . . 8 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (2 · 𝑛) = (2 · 𝑚))
1413oveq1d 6564 . . . . . . 7 ((𝑛 = 𝑚𝑠 ∈ ℝ) → ((2 · 𝑛) + 1) = ((2 · 𝑚) + 1))
1514oveq1d 6564 . . . . . 6 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (((2 · 𝑛) + 1) / (2 · π)) = (((2 · 𝑚) + 1) / (2 · π)))
1612oveq1d 6564 . . . . . . . . 9 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (𝑛 + (1 / 2)) = (𝑚 + (1 / 2)))
1716oveq1d 6564 . . . . . . . 8 ((𝑛 = 𝑚𝑠 ∈ ℝ) → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑚 + (1 / 2)) · 𝑠))
1817fveq2d 6107 . . . . . . 7 ((𝑛 = 𝑚𝑠 ∈ ℝ) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑚 + (1 / 2)) · 𝑠)))
1918oveq1d 6564 . . . . . 6 ((𝑛 = 𝑚𝑠 ∈ ℝ) → ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
2015, 19ifeq12d 4056 . . . . 5 ((𝑛 = 𝑚𝑠 ∈ ℝ) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
2120mpteq2dva 4672 . . . 4 (𝑛 = 𝑚 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
2221cbvmptv 4678 . . 3 (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) = (𝑚 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
2311, 22eqtri 2632 . 2 𝐷 = (𝑚 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
24 reex 9906 . . 3 ℝ ∈ V
2524mptex 6390 . 2 (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) ∈ V
2610, 23, 25fvmpt 6191 1 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  ifcif 4036  cmpt 4643  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   / cdiv 10563  cn 10897  2c2 10947   mod cmo 12530  sincsin 14633  πcpi 14636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552
This theorem is referenced by:  dirkerval2  38987  dirkerf  38990  dirkertrigeq  38994  dirkercncflem2  38997  dirkercncflem4  38999
  Copyright terms: Public domain W3C validator