MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnen Structured version   Visualization version   GIF version

Theorem difsnen 7927
Description: All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015.)
Assertion
Ref Expression
difsnen ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))

Proof of Theorem difsnen
StepHypRef Expression
1 difexg 4735 . . . . . 6 (𝑋𝑉 → (𝑋 ∖ {𝐴}) ∈ V)
2 enrefg 7873 . . . . . 6 ((𝑋 ∖ {𝐴}) ∈ V → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}))
31, 2syl 17 . . . . 5 (𝑋𝑉 → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}))
433ad2ant1 1075 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}))
5 sneq 4135 . . . . . 6 (𝐴 = 𝐵 → {𝐴} = {𝐵})
65difeq2d 3690 . . . . 5 (𝐴 = 𝐵 → (𝑋 ∖ {𝐴}) = (𝑋 ∖ {𝐵}))
76breq2d 4595 . . . 4 (𝐴 = 𝐵 → ((𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}) ↔ (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})))
84, 7syl5ibcom 234 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴 = 𝐵 → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})))
98imp 444 . 2 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
10 simpl1 1057 . . . . . 6 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝑋𝑉)
11 difexg 4735 . . . . . 6 ((𝑋 ∖ {𝐴}) ∈ V → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∈ V)
12 enrefg 7873 . . . . . 6 (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∈ V → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐴}) ∖ {𝐵}))
1310, 1, 11, 124syl 19 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐴}) ∖ {𝐵}))
14 dif32 3850 . . . . 5 ((𝑋 ∖ {𝐴}) ∖ {𝐵}) = ((𝑋 ∖ {𝐵}) ∖ {𝐴})
1513, 14syl6breq 4624 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐵}) ∖ {𝐴}))
16 simpl3 1059 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐵𝑋)
17 simpl2 1058 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐴𝑋)
18 en2sn 7922 . . . . 5 ((𝐵𝑋𝐴𝑋) → {𝐵} ≈ {𝐴})
1916, 17, 18syl2anc 691 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → {𝐵} ≈ {𝐴})
20 incom 3767 . . . . . 6 (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∩ {𝐵}) = ({𝐵} ∩ ((𝑋 ∖ {𝐴}) ∖ {𝐵}))
21 disjdif 3992 . . . . . 6 ({𝐵} ∩ ((𝑋 ∖ {𝐴}) ∖ {𝐵})) = ∅
2220, 21eqtri 2632 . . . . 5 (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∩ {𝐵}) = ∅
2322a1i 11 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∩ {𝐵}) = ∅)
24 incom 3767 . . . . . 6 (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∩ {𝐴}) = ({𝐴} ∩ ((𝑋 ∖ {𝐵}) ∖ {𝐴}))
25 disjdif 3992 . . . . . 6 ({𝐴} ∩ ((𝑋 ∖ {𝐵}) ∖ {𝐴})) = ∅
2624, 25eqtri 2632 . . . . 5 (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∩ {𝐴}) = ∅
2726a1i 11 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∩ {𝐴}) = ∅)
28 unen 7925 . . . 4 (((((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∧ {𝐵} ≈ {𝐴}) ∧ ((((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∩ {𝐵}) = ∅ ∧ (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∩ {𝐴}) = ∅)) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) ≈ (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}))
2915, 19, 23, 27, 28syl22anc 1319 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) ≈ (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}))
30 simpr 476 . . . . . 6 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐴𝐵)
3130necomd 2837 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐵𝐴)
32 eldifsn 4260 . . . . 5 (𝐵 ∈ (𝑋 ∖ {𝐴}) ↔ (𝐵𝑋𝐵𝐴))
3316, 31, 32sylanbrc 695 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐵 ∈ (𝑋 ∖ {𝐴}))
34 difsnid 4282 . . . 4 (𝐵 ∈ (𝑋 ∖ {𝐴}) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) = (𝑋 ∖ {𝐴}))
3533, 34syl 17 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) = (𝑋 ∖ {𝐴}))
36 eldifsn 4260 . . . . 5 (𝐴 ∈ (𝑋 ∖ {𝐵}) ↔ (𝐴𝑋𝐴𝐵))
3717, 30, 36sylanbrc 695 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑋 ∖ {𝐵}))
38 difsnid 4282 . . . 4 (𝐴 ∈ (𝑋 ∖ {𝐵}) → (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}) = (𝑋 ∖ {𝐵}))
3937, 38syl 17 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}) = (𝑋 ∖ {𝐵}))
4029, 35, 393brtr3d 4614 . 2 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
419, 40pm2.61dane 2869 1 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  cdif 3537  cun 3538  cin 3539  c0 3874  {csn 4125   class class class wbr 4583  cen 7838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-suc 5646  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-1o 7447  df-er 7629  df-en 7842
This theorem is referenced by:  domdifsn  7928  domunsncan  7945  enfixsn  7954  infdifsn  8437  cda1dif  8881
  Copyright terms: Public domain W3C validator