MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domunsncan Structured version   Visualization version   GIF version

Theorem domunsncan 7945
Description: A singleton cancellation law for dominance. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypotheses
Ref Expression
domunsncan.a 𝐴 ∈ V
domunsncan.b 𝐵 ∈ V
Assertion
Ref Expression
domunsncan ((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) → (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) ↔ 𝑋𝑌))

Proof of Theorem domunsncan
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ssun2 3739 . . . 4 𝑌 ⊆ ({𝐵} ∪ 𝑌)
2 reldom 7847 . . . . . 6 Rel ≼
32brrelex2i 5083 . . . . 5 (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) → ({𝐵} ∪ 𝑌) ∈ V)
43adantl 481 . . . 4 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → ({𝐵} ∪ 𝑌) ∈ V)
5 ssexg 4732 . . . 4 ((𝑌 ⊆ ({𝐵} ∪ 𝑌) ∧ ({𝐵} ∪ 𝑌) ∈ V) → 𝑌 ∈ V)
61, 4, 5sylancr 694 . . 3 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → 𝑌 ∈ V)
7 brdomi 7852 . . . . 5 (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) → ∃𝑓 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))
8 vex 3176 . . . . . . . . . . 11 𝑓 ∈ V
98resex 5363 . . . . . . . . . 10 (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ∈ V
10 simprr 792 . . . . . . . . . . 11 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))
11 difss 3699 . . . . . . . . . . 11 (({𝐴} ∪ 𝑋) ∖ {𝐴}) ⊆ ({𝐴} ∪ 𝑋)
12 f1ores 6064 . . . . . . . . . . 11 ((𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) ∧ (({𝐴} ∪ 𝑋) ∖ {𝐴}) ⊆ ({𝐴} ∪ 𝑋)) → (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})):(({𝐴} ∪ 𝑋) ∖ {𝐴})–1-1-onto→(𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})))
1310, 11, 12sylancl 693 . . . . . . . . . 10 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})):(({𝐴} ∪ 𝑋) ∖ {𝐴})–1-1-onto→(𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})))
14 f1oen3g 7857 . . . . . . . . . 10 (((𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ∈ V ∧ (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})):(({𝐴} ∪ 𝑋) ∖ {𝐴})–1-1-onto→(𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴}))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≈ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})))
159, 13, 14sylancr 694 . . . . . . . . 9 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≈ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})))
16 df-f1 5809 . . . . . . . . . . . . 13 (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) ↔ (𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌) ∧ Fun 𝑓))
1716simprbi 479 . . . . . . . . . . . 12 (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → Fun 𝑓)
18 imadif 5887 . . . . . . . . . . . 12 (Fun 𝑓 → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) = ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})))
1917, 18syl 17 . . . . . . . . . . 11 (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) = ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})))
2019ad2antll 761 . . . . . . . . . 10 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) = ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})))
21 snex 4835 . . . . . . . . . . . . . 14 {𝐵} ∈ V
22 simprl 790 . . . . . . . . . . . . . 14 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑌 ∈ V)
23 unexg 6857 . . . . . . . . . . . . . 14 (({𝐵} ∈ V ∧ 𝑌 ∈ V) → ({𝐵} ∪ 𝑌) ∈ V)
2421, 22, 23sylancr 694 . . . . . . . . . . . . 13 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ({𝐵} ∪ 𝑌) ∈ V)
25 difexg 4735 . . . . . . . . . . . . 13 (({𝐵} ∪ 𝑌) ∈ V → (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) ∈ V)
2624, 25syl 17 . . . . . . . . . . . 12 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) ∈ V)
27 f1f 6014 . . . . . . . . . . . . . . . 16 (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌))
28 imassrn 5396 . . . . . . . . . . . . . . . . 17 (𝑓 “ ({𝐴} ∪ 𝑋)) ⊆ ran 𝑓
29 frn 5966 . . . . . . . . . . . . . . . . 17 (𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌) → ran 𝑓 ⊆ ({𝐵} ∪ 𝑌))
3028, 29syl5ss 3579 . . . . . . . . . . . . . . . 16 (𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌) → (𝑓 “ ({𝐴} ∪ 𝑋)) ⊆ ({𝐵} ∪ 𝑌))
3127, 30syl 17 . . . . . . . . . . . . . . 15 (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → (𝑓 “ ({𝐴} ∪ 𝑋)) ⊆ ({𝐵} ∪ 𝑌))
3231ad2antll 761 . . . . . . . . . . . . . 14 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 “ ({𝐴} ∪ 𝑋)) ⊆ ({𝐵} ∪ 𝑌))
3332ssdifd 3708 . . . . . . . . . . . . 13 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ⊆ (({𝐵} ∪ 𝑌) ∖ (𝑓 “ {𝐴})))
34 f1fn 6015 . . . . . . . . . . . . . . . 16 (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑓 Fn ({𝐴} ∪ 𝑋))
3534ad2antll 761 . . . . . . . . . . . . . . 15 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑓 Fn ({𝐴} ∪ 𝑋))
36 domunsncan.a . . . . . . . . . . . . . . . . 17 𝐴 ∈ V
3736snid 4155 . . . . . . . . . . . . . . . 16 𝐴 ∈ {𝐴}
38 elun1 3742 . . . . . . . . . . . . . . . 16 (𝐴 ∈ {𝐴} → 𝐴 ∈ ({𝐴} ∪ 𝑋))
3937, 38ax-mp 5 . . . . . . . . . . . . . . 15 𝐴 ∈ ({𝐴} ∪ 𝑋)
40 fnsnfv 6168 . . . . . . . . . . . . . . 15 ((𝑓 Fn ({𝐴} ∪ 𝑋) ∧ 𝐴 ∈ ({𝐴} ∪ 𝑋)) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
4135, 39, 40sylancl 693 . . . . . . . . . . . . . 14 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
4241difeq2d 3690 . . . . . . . . . . . . 13 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) = (({𝐵} ∪ 𝑌) ∖ (𝑓 “ {𝐴})))
4333, 42sseqtr4d 3605 . . . . . . . . . . . 12 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ⊆ (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}))
44 ssdomg 7887 . . . . . . . . . . . 12 ((({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) ∈ V → (((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ⊆ (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)})))
4526, 43, 44sylc 63 . . . . . . . . . . 11 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}))
46 ffvelrn 6265 . . . . . . . . . . . . . 14 ((𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌) ∧ 𝐴 ∈ ({𝐴} ∪ 𝑋)) → (𝑓𝐴) ∈ ({𝐵} ∪ 𝑌))
4727, 39, 46sylancl 693 . . . . . . . . . . . . 13 (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → (𝑓𝐴) ∈ ({𝐵} ∪ 𝑌))
4847ad2antll 761 . . . . . . . . . . . 12 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓𝐴) ∈ ({𝐵} ∪ 𝑌))
49 domunsncan.b . . . . . . . . . . . . . 14 𝐵 ∈ V
5049snid 4155 . . . . . . . . . . . . 13 𝐵 ∈ {𝐵}
51 elun1 3742 . . . . . . . . . . . . 13 (𝐵 ∈ {𝐵} → 𝐵 ∈ ({𝐵} ∪ 𝑌))
5250, 51mp1i 13 . . . . . . . . . . . 12 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝐵 ∈ ({𝐵} ∪ 𝑌))
53 difsnen 7927 . . . . . . . . . . . 12 ((({𝐵} ∪ 𝑌) ∈ V ∧ (𝑓𝐴) ∈ ({𝐵} ∪ 𝑌) ∧ 𝐵 ∈ ({𝐵} ∪ 𝑌)) → (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) ≈ (({𝐵} ∪ 𝑌) ∖ {𝐵}))
5424, 48, 52, 53syl3anc 1318 . . . . . . . . . . 11 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) ≈ (({𝐵} ∪ 𝑌) ∖ {𝐵}))
55 domentr 7901 . . . . . . . . . . 11 ((((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) ∧ (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) ≈ (({𝐵} ∪ 𝑌) ∖ {𝐵})) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵}))
5645, 54, 55syl2anc 691 . . . . . . . . . 10 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵}))
5720, 56eqbrtrd 4605 . . . . . . . . 9 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵}))
58 endomtr 7900 . . . . . . . . 9 (((({𝐴} ∪ 𝑋) ∖ {𝐴}) ≈ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ∧ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵})) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵}))
5915, 57, 58syl2anc 691 . . . . . . . 8 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵}))
60 uncom 3719 . . . . . . . . . . . 12 ({𝐴} ∪ 𝑋) = (𝑋 ∪ {𝐴})
6160difeq1i 3686 . . . . . . . . . . 11 (({𝐴} ∪ 𝑋) ∖ {𝐴}) = ((𝑋 ∪ {𝐴}) ∖ {𝐴})
62 difun2 4000 . . . . . . . . . . 11 ((𝑋 ∪ {𝐴}) ∖ {𝐴}) = (𝑋 ∖ {𝐴})
6361, 62eqtri 2632 . . . . . . . . . 10 (({𝐴} ∪ 𝑋) ∖ {𝐴}) = (𝑋 ∖ {𝐴})
64 difsn 4269 . . . . . . . . . 10 𝐴𝑋 → (𝑋 ∖ {𝐴}) = 𝑋)
6563, 64syl5eq 2656 . . . . . . . . 9 𝐴𝑋 → (({𝐴} ∪ 𝑋) ∖ {𝐴}) = 𝑋)
6665ad2antrr 758 . . . . . . . 8 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) = 𝑋)
67 uncom 3719 . . . . . . . . . . . 12 ({𝐵} ∪ 𝑌) = (𝑌 ∪ {𝐵})
6867difeq1i 3686 . . . . . . . . . . 11 (({𝐵} ∪ 𝑌) ∖ {𝐵}) = ((𝑌 ∪ {𝐵}) ∖ {𝐵})
69 difun2 4000 . . . . . . . . . . 11 ((𝑌 ∪ {𝐵}) ∖ {𝐵}) = (𝑌 ∖ {𝐵})
7068, 69eqtri 2632 . . . . . . . . . 10 (({𝐵} ∪ 𝑌) ∖ {𝐵}) = (𝑌 ∖ {𝐵})
71 difsn 4269 . . . . . . . . . 10 𝐵𝑌 → (𝑌 ∖ {𝐵}) = 𝑌)
7270, 71syl5eq 2656 . . . . . . . . 9 𝐵𝑌 → (({𝐵} ∪ 𝑌) ∖ {𝐵}) = 𝑌)
7372ad2antlr 759 . . . . . . . 8 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {𝐵}) = 𝑌)
7459, 66, 733brtr3d 4614 . . . . . . 7 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑋𝑌)
7574expr 641 . . . . . 6 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ 𝑌 ∈ V) → (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑋𝑌))
7675exlimdv 1848 . . . . 5 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ 𝑌 ∈ V) → (∃𝑓 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑋𝑌))
777, 76syl5 33 . . . 4 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ 𝑌 ∈ V) → (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) → 𝑋𝑌))
7877impancom 455 . . 3 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → (𝑌 ∈ V → 𝑋𝑌))
796, 78mpd 15 . 2 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → 𝑋𝑌)
80 en2sn 7922 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴} ≈ {𝐵})
8136, 49, 80mp2an 704 . . . 4 {𝐴} ≈ {𝐵}
82 endom 7868 . . . 4 ({𝐴} ≈ {𝐵} → {𝐴} ≼ {𝐵})
8381, 82mp1i 13 . . 3 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ 𝑋𝑌) → {𝐴} ≼ {𝐵})
84 simpr 476 . . 3 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ 𝑋𝑌) → 𝑋𝑌)
85 incom 3767 . . . . 5 ({𝐵} ∩ 𝑌) = (𝑌 ∩ {𝐵})
86 disjsn 4192 . . . . . 6 ((𝑌 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝑌)
8786biimpri 217 . . . . 5 𝐵𝑌 → (𝑌 ∩ {𝐵}) = ∅)
8885, 87syl5eq 2656 . . . 4 𝐵𝑌 → ({𝐵} ∩ 𝑌) = ∅)
8988ad2antlr 759 . . 3 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ 𝑋𝑌) → ({𝐵} ∩ 𝑌) = ∅)
90 undom 7933 . . 3 ((({𝐴} ≼ {𝐵} ∧ 𝑋𝑌) ∧ ({𝐵} ∩ 𝑌) = ∅) → ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌))
9183, 84, 89, 90syl21anc 1317 . 2 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ 𝑋𝑌) → ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌))
9279, 91impbida 873 1 ((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) → (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) ↔ 𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  ccnv 5037  ran crn 5039  cres 5040  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804  cen 7838  cdom 7839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843
This theorem is referenced by:  domunfican  8118
  Copyright terms: Public domain W3C validator