Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsclm Structured version   Visualization version   GIF version

Theorem cvsclm 22734
 Description: A complex vector space is a complex left module. (Contributed by Thierry Arnoux, 22-May-2019.)
Hypothesis
Ref Expression
cvslvec.1 (𝜑𝑊 ∈ ℂVec)
Assertion
Ref Expression
cvsclm (𝜑𝑊 ∈ ℂMod)

Proof of Theorem cvsclm
StepHypRef Expression
1 cvslvec.1 . 2 (𝜑𝑊 ∈ ℂVec)
2 df-cvs 22732 . . . 4 ℂVec = (ℂMod ∩ LVec)
32elin2 3763 . . 3 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec))
43simplbi 475 . 2 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
51, 4syl 17 1 (𝜑𝑊 ∈ ℂMod)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977  LVecclvec 18923  ℂModcclm 22670  ℂVecccvs 22731 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-in 3547  df-cvs 22732 This theorem is referenced by:  cvsunit  22739  cvsdiv  22740  cvsmuleqdivd  22742  cvsdiveqd  22743  isncvsngp  22757  ncvsprp  22760  ncvsm1  22762  ncvsdif  22763  ncvspi  22764  ncvspds  22769  cnncvsmulassdemo  22772  ttgcontlem1  25565
 Copyright terms: Public domain W3C validator