MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnviin Structured version   Visualization version   GIF version

Theorem cnviin 5589
Description: The converse of an intersection is the intersection of the converse. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
cnviin (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cnviin
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5422 . 2 Rel 𝑥𝐴 𝐵
2 relcnv 5422 . . . . . . 7 Rel 𝐵
3 df-rel 5045 . . . . . . 7 (Rel 𝐵𝐵 ⊆ (V × V))
42, 3mpbi 219 . . . . . 6 𝐵 ⊆ (V × V)
54rgenw 2908 . . . . 5 𝑥𝐴 𝐵 ⊆ (V × V)
6 r19.2z 4012 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ⊆ (V × V)) → ∃𝑥𝐴 𝐵 ⊆ (V × V))
75, 6mpan2 703 . . . 4 (𝐴 ≠ ∅ → ∃𝑥𝐴 𝐵 ⊆ (V × V))
8 iinss 4507 . . . 4 (∃𝑥𝐴 𝐵 ⊆ (V × V) → 𝑥𝐴 𝐵 ⊆ (V × V))
97, 8syl 17 . . 3 (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 ⊆ (V × V))
10 df-rel 5045 . . 3 (Rel 𝑥𝐴 𝐵 𝑥𝐴 𝐵 ⊆ (V × V))
119, 10sylibr 223 . 2 (𝐴 ≠ ∅ → Rel 𝑥𝐴 𝐵)
12 opex 4859 . . . . 5 𝑏, 𝑎⟩ ∈ V
13 eliin 4461 . . . . 5 (⟨𝑏, 𝑎⟩ ∈ V → (⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵))
1412, 13ax-mp 5 . . . 4 (⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
15 vex 3176 . . . . 5 𝑎 ∈ V
16 vex 3176 . . . . 5 𝑏 ∈ V
1715, 16opelcnv 5226 . . . 4 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵)
18 opex 4859 . . . . . 6 𝑎, 𝑏⟩ ∈ V
19 eliin 4461 . . . . . 6 (⟨𝑎, 𝑏⟩ ∈ V → (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵))
2018, 19ax-mp 5 . . . . 5 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵)
2115, 16opelcnv 5226 . . . . . 6 (⟨𝑎, 𝑏⟩ ∈ 𝐵 ↔ ⟨𝑏, 𝑎⟩ ∈ 𝐵)
2221ralbii 2963 . . . . 5 (∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
2320, 22bitri 263 . . . 4 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
2414, 17, 233bitr4i 291 . . 3 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵)
2524eqrelriv 5136 . 2 ((Rel 𝑥𝐴 𝐵 ∧ Rel 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
261, 11, 25sylancr 694 1 (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  wss 3540  c0 3874  cop 4131   ciin 4456   × cxp 5036  ccnv 5037  Rel wrel 5043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-iin 4458  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator