MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnt0 Structured version   Visualization version   GIF version

Theorem cnt0 20960
Description: The preimage of a T0 topology under an injective map is T0. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnt0 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Kol2)

Proof of Theorem cnt0
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop1 20854 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
213ad2ant3 1077 . 2 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3 simpl3 1059 . . . . . . . . 9 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹 ∈ (𝐽 Cn 𝐾))
4 cnima 20879 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑤𝐾) → (𝐹𝑤) ∈ 𝐽)
53, 4sylan 487 . . . . . . . 8 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → (𝐹𝑤) ∈ 𝐽)
6 eleq2 2677 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → (𝑥𝑧𝑥 ∈ (𝐹𝑤)))
7 eleq2 2677 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → (𝑦𝑧𝑦 ∈ (𝐹𝑤)))
86, 7bibi12d 334 . . . . . . . . 9 (𝑧 = (𝐹𝑤) → ((𝑥𝑧𝑦𝑧) ↔ (𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤))))
98rspcv 3278 . . . . . . . 8 ((𝐹𝑤) ∈ 𝐽 → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → (𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤))))
105, 9syl 17 . . . . . . 7 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → (𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤))))
11 eqid 2610 . . . . . . . . . . . . . 14 𝐽 = 𝐽
12 eqid 2610 . . . . . . . . . . . . . 14 𝐾 = 𝐾
1311, 12cnf 20860 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
143, 13syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹: 𝐽 𝐾)
15 ffn 5958 . . . . . . . . . . . 12 (𝐹: 𝐽 𝐾𝐹 Fn 𝐽)
1614, 15syl 17 . . . . . . . . . . 11 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹 Fn 𝐽)
17 elpreima 6245 . . . . . . . . . . 11 (𝐹 Fn 𝐽 → (𝑥 ∈ (𝐹𝑤) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑤)))
1816, 17syl 17 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥 ∈ (𝐹𝑤) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑤)))
19 simprl 790 . . . . . . . . . . 11 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑥 𝐽)
2019biantrurd 528 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → ((𝐹𝑥) ∈ 𝑤 ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑤)))
2118, 20bitr4d 270 . . . . . . . . 9 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥 ∈ (𝐹𝑤) ↔ (𝐹𝑥) ∈ 𝑤))
22 elpreima 6245 . . . . . . . . . . 11 (𝐹 Fn 𝐽 → (𝑦 ∈ (𝐹𝑤) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑤)))
2316, 22syl 17 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑦 ∈ (𝐹𝑤) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑤)))
24 simprr 792 . . . . . . . . . . 11 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑦 𝐽)
2524biantrurd 528 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → ((𝐹𝑦) ∈ 𝑤 ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑤)))
2623, 25bitr4d 270 . . . . . . . . 9 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑦 ∈ (𝐹𝑤) ↔ (𝐹𝑦) ∈ 𝑤))
2721, 26bibi12d 334 . . . . . . . 8 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → ((𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤)) ↔ ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
2827adantr 480 . . . . . . 7 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → ((𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤)) ↔ ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
2910, 28sylibd 228 . . . . . 6 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
3029ralrimdva 2952 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → ∀𝑤𝐾 ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
31 simpl1 1057 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐾 ∈ Kol2)
3214, 19ffvelrnd 6268 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝐹𝑥) ∈ 𝐾)
3314, 24ffvelrnd 6268 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝐹𝑦) ∈ 𝐾)
3412t0sep 20938 . . . . . 6 ((𝐾 ∈ Kol2 ∧ ((𝐹𝑥) ∈ 𝐾 ∧ (𝐹𝑦) ∈ 𝐾)) → (∀𝑤𝐾 ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤) → (𝐹𝑥) = (𝐹𝑦)))
3531, 32, 33, 34syl12anc 1316 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑤𝐾 ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤) → (𝐹𝑥) = (𝐹𝑦)))
3630, 35syld 46 . . . 4 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → (𝐹𝑥) = (𝐹𝑦)))
37 simpl2 1058 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹:𝑋1-1𝑌)
38 fdm 5964 . . . . . . . 8 (𝐹: 𝐽 𝐾 → dom 𝐹 = 𝐽)
3914, 38syl 17 . . . . . . 7 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → dom 𝐹 = 𝐽)
40 f1dm 6018 . . . . . . . 8 (𝐹:𝑋1-1𝑌 → dom 𝐹 = 𝑋)
4137, 40syl 17 . . . . . . 7 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → dom 𝐹 = 𝑋)
4239, 41eqtr3d 2646 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐽 = 𝑋)
4319, 42eleqtrd 2690 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑥𝑋)
4424, 42eleqtrd 2690 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑦𝑋)
45 f1fveq 6420 . . . . 5 ((𝐹:𝑋1-1𝑌 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4637, 43, 44, 45syl12anc 1316 . . . 4 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4736, 46sylibd 228 . . 3 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
4847ralrimivva 2954 . 2 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
4911ist0 20934 . 2 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
502, 48, 49sylanbrc 695 1 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896   cuni 4372  ccnv 5037  dom cdm 5038  cima 5041   Fn wfn 5799  wf 5800  1-1wf1 5801  cfv 5804  (class class class)co 6549  Topctop 20517   Cn ccn 20838  Kol2ct0 20920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-top 20521  df-topon 20523  df-cn 20841  df-t0 20927
This theorem is referenced by:  restt0  20980  sst0  20987  t0hmph  21403
  Copyright terms: Public domain W3C validator