Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem4 Structured version   Visualization version   GIF version

Theorem clsk1indlem4 37362
Description: The ansatz closure function (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) has the K4 property of idempotence. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k 𝐾 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))
Assertion
Ref Expression
clsk1indlem4 𝑠 ∈ 𝒫 3𝑜(𝐾‘(𝐾𝑠)) = (𝐾𝑠)
Distinct variable group:   𝑠,𝑟
Allowed substitution hints:   𝐾(𝑠,𝑟)

Proof of Theorem clsk1indlem4
StepHypRef Expression
1 tpex 6855 . . . . . . . . . 10 {∅, 1𝑜, 2𝑜} ∈ V
21a1i 11 . . . . . . . . 9 (⊤ → {∅, 1𝑜, 2𝑜} ∈ V)
3 snsstp1 4287 . . . . . . . . . . . 12 {∅} ⊆ {∅, 1𝑜, 2𝑜}
43a1i 11 . . . . . . . . . . 11 (⊤ → {∅} ⊆ {∅, 1𝑜, 2𝑜})
5 0ex 4718 . . . . . . . . . . . 12 ∅ ∈ V
65snss 4259 . . . . . . . . . . 11 (∅ ∈ {∅, 1𝑜, 2𝑜} ↔ {∅} ⊆ {∅, 1𝑜, 2𝑜})
74, 6sylibr 223 . . . . . . . . . 10 (⊤ → ∅ ∈ {∅, 1𝑜, 2𝑜})
8 snsstp2 4288 . . . . . . . . . . . 12 {1𝑜} ⊆ {∅, 1𝑜, 2𝑜}
98a1i 11 . . . . . . . . . . 11 (⊤ → {1𝑜} ⊆ {∅, 1𝑜, 2𝑜})
10 1on 7454 . . . . . . . . . . . . 13 1𝑜 ∈ On
1110elexi 3186 . . . . . . . . . . . 12 1𝑜 ∈ V
1211snss 4259 . . . . . . . . . . 11 (1𝑜 ∈ {∅, 1𝑜, 2𝑜} ↔ {1𝑜} ⊆ {∅, 1𝑜, 2𝑜})
139, 12sylibr 223 . . . . . . . . . 10 (⊤ → 1𝑜 ∈ {∅, 1𝑜, 2𝑜})
147, 13prssd 4294 . . . . . . . . 9 (⊤ → {∅, 1𝑜} ⊆ {∅, 1𝑜, 2𝑜})
152, 14sselpwd 4734 . . . . . . . 8 (⊤ → {∅, 1𝑜} ∈ 𝒫 {∅, 1𝑜, 2𝑜})
1615trud 1484 . . . . . . 7 {∅, 1𝑜} ∈ 𝒫 {∅, 1𝑜, 2𝑜}
17 df3o2 37342 . . . . . . . 8 3𝑜 = {∅, 1𝑜, 2𝑜}
1817pweqi 4112 . . . . . . 7 𝒫 3𝑜 = 𝒫 {∅, 1𝑜, 2𝑜}
1916, 18eleqtrri 2687 . . . . . 6 {∅, 1𝑜} ∈ 𝒫 3𝑜
2019a1i 11 . . . . 5 (𝑠 ∈ 𝒫 3𝑜 → {∅, 1𝑜} ∈ 𝒫 3𝑜)
21 id 22 . . . . 5 (𝑠 ∈ 𝒫 3𝑜𝑠 ∈ 𝒫 3𝑜)
2220, 21ifcld 4081 . . . 4 (𝑠 ∈ 𝒫 3𝑜 → if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∈ 𝒫 3𝑜)
23 eqeq1 2614 . . . . . . . 8 (𝑟 = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) → (𝑟 = {∅} ↔ if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) = {∅}))
24 eqcom 2617 . . . . . . . . 9 (if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) = {∅} ↔ {∅} = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
25 eqif 4076 . . . . . . . . 9 ({∅} = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ↔ ((𝑠 = {∅} ∧ {∅} = {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)))
2624, 25bitri 263 . . . . . . . 8 (if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) = {∅} ↔ ((𝑠 = {∅} ∧ {∅} = {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)))
2723, 26syl6bb 275 . . . . . . 7 (𝑟 = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) → (𝑟 = {∅} ↔ ((𝑠 = {∅} ∧ {∅} = {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠))))
28 id 22 . . . . . . 7 (𝑟 = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) → 𝑟 = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
2927, 28ifbieq2d 4061 . . . . . 6 (𝑟 = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = if(((𝑠 = {∅} ∧ {∅} = {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)), {∅, 1𝑜}, if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠)))
30 1n0 7462 . . . . . . . . . 10 1𝑜 ≠ ∅
31 dfsn2 4138 . . . . . . . . . . . 12 {∅} = {∅, ∅}
3231eqeq1i 2615 . . . . . . . . . . 11 ({∅} = {∅, 1𝑜} ↔ {∅, ∅} = {∅, 1𝑜})
335a1i 11 . . . . . . . . . . . . 13 (⊤ → ∅ ∈ V)
3410a1i 11 . . . . . . . . . . . . 13 (⊤ → 1𝑜 ∈ On)
3533, 34preq2b 4318 . . . . . . . . . . . 12 (⊤ → ({∅, ∅} = {∅, 1𝑜} ↔ ∅ = 1𝑜))
3635trud 1484 . . . . . . . . . . 11 ({∅, ∅} = {∅, 1𝑜} ↔ ∅ = 1𝑜)
37 eqcom 2617 . . . . . . . . . . 11 (∅ = 1𝑜 ↔ 1𝑜 = ∅)
3832, 36, 373bitri 285 . . . . . . . . . 10 ({∅} = {∅, 1𝑜} ↔ 1𝑜 = ∅)
3930, 38nemtbir 2877 . . . . . . . . 9 ¬ {∅} = {∅, 1𝑜}
4039intnan 951 . . . . . . . 8 ¬ (𝑠 = {∅} ∧ {∅} = {∅, 1𝑜})
41 pm3.24 922 . . . . . . . . 9 ¬ (𝑠 = {∅} ∧ ¬ 𝑠 = {∅})
42 eqcom 2617 . . . . . . . . . 10 (𝑠 = {∅} ↔ {∅} = 𝑠)
4342anbi2ci 728 . . . . . . . . 9 ((𝑠 = {∅} ∧ ¬ 𝑠 = {∅}) ↔ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠))
4441, 43mtbi 311 . . . . . . . 8 ¬ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)
4540, 44pm3.2ni 895 . . . . . . 7 ¬ ((𝑠 = {∅} ∧ {∅} = {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠))
4645iffalsei 4046 . . . . . 6 if(((𝑠 = {∅} ∧ {∅} = {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)), {∅, 1𝑜}, if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠)) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠)
4729, 46syl6eq 2660 . . . . 5 (𝑟 = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
48 clsk1indlem.k . . . . 5 𝐾 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))
49 prex 4836 . . . . . 6 {∅, 1𝑜} ∈ V
50 vex 3176 . . . . . 6 𝑠 ∈ V
5149, 50ifex 4106 . . . . 5 if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∈ V
5247, 48, 51fvmpt 6191 . . . 4 (if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∈ 𝒫 3𝑜 → (𝐾‘if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠)) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
5322, 52syl 17 . . 3 (𝑠 ∈ 𝒫 3𝑜 → (𝐾‘if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠)) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
54 eqeq1 2614 . . . . . 6 (𝑟 = 𝑠 → (𝑟 = {∅} ↔ 𝑠 = {∅}))
55 id 22 . . . . . 6 (𝑟 = 𝑠𝑟 = 𝑠)
5654, 55ifbieq2d 4061 . . . . 5 (𝑟 = 𝑠 → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
5756, 48, 51fvmpt 6191 . . . 4 (𝑠 ∈ 𝒫 3𝑜 → (𝐾𝑠) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
5857fveq2d 6107 . . 3 (𝑠 ∈ 𝒫 3𝑜 → (𝐾‘(𝐾𝑠)) = (𝐾‘if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠)))
5953, 58, 573eqtr4d 2654 . 2 (𝑠 ∈ 𝒫 3𝑜 → (𝐾‘(𝐾𝑠)) = (𝐾𝑠))
6059rgen 2906 1 𝑠 ∈ 𝒫 3𝑜(𝐾‘(𝐾𝑠)) = (𝐾𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wo 382  wa 383   = wceq 1475  wtru 1476  wcel 1977  wral 2896  Vcvv 3173  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125  {cpr 4127  {ctp 4129  cmpt 4643  Oncon0 5640  cfv 5804  1𝑜c1o 7440  2𝑜c2o 7441  3𝑜c3o 7442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fv 5812  df-1o 7447  df-2o 7448  df-3o 7449
This theorem is referenced by:  clsk1independent  37364
  Copyright terms: Public domain W3C validator