Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg18a Structured version   Visualization version   GIF version

Theorem cdlemg18a 34984
 Description: Show two lines are different. TODO: fix comment. (Contributed by NM, 14-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg18a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝑃 (𝐹𝑄)) ≠ (𝑄 (𝐹𝑃)))

Proof of Theorem cdlemg18a
StepHypRef Expression
1 simp3r 1083 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))
2 simpl1l 1105 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → 𝐾 ∈ HL)
3 simpl21 1132 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → 𝑃𝐴)
4 simpl1 1057 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simpl23 1134 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → 𝐹𝑇)
6 simpl22 1133 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → 𝑄𝐴)
7 cdlemg12.l . . . . . . . 8 = (le‘𝐾)
8 cdlemg12.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
9 cdlemg12.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
10 cdlemg12.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
117, 8, 9, 10ltrnat 34444 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄𝐴) → (𝐹𝑄) ∈ 𝐴)
124, 5, 6, 11syl3anc 1318 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝐹𝑄) ∈ 𝐴)
137, 8, 9, 10ltrnat 34444 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
144, 5, 3, 13syl3anc 1318 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝐹𝑃) ∈ 𝐴)
15 simpl3l 1109 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → 𝑃𝑄)
168, 9, 10ltrn11at 34451 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → (𝐹𝑃) ≠ (𝐹𝑄))
174, 5, 3, 6, 15, 16syl113anc 1330 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝐹𝑃) ≠ (𝐹𝑄))
1817necomd 2837 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝐹𝑄) ≠ (𝐹𝑃))
19 simpr 476 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃)))
20 cdlemg12.j . . . . . . 7 = (join‘𝐾)
2120, 8hlatexch4 33785 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑄) ∈ 𝐴) ∧ (𝑄𝐴 ∧ (𝐹𝑃) ∈ 𝐴) ∧ (𝑃𝑄 ∧ (𝐹𝑄) ≠ (𝐹𝑃) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃)))) → (𝑃 𝑄) = ((𝐹𝑄) (𝐹𝑃)))
222, 3, 12, 6, 14, 15, 18, 19, 21syl323anc 1348 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝑃 𝑄) = ((𝐹𝑄) (𝐹𝑃)))
2322eqcomd 2616 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → ((𝐹𝑄) (𝐹𝑃)) = (𝑃 𝑄))
2423ex 449 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → ((𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃)) → ((𝐹𝑄) (𝐹𝑃)) = (𝑃 𝑄)))
2524necon3d 2803 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄) → (𝑃 (𝐹𝑄)) ≠ (𝑄 (𝐹𝑃))))
261, 25mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝑃 (𝐹𝑄)) ≠ (𝑄 (𝐹𝑃)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ‘cfv 5804  (class class class)co 6549  lecple 15775  joincjn 16767  meetcmee 16768  Atomscatm 33568  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  trLctrl 34463 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409 This theorem is referenced by:  cdlemg18c  34986
 Copyright terms: Public domain W3C validator