Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg18a Structured version   Unicode version

Theorem cdlemg18a 34044
Description: Show two lines are different. TODO: fix comment. (Contributed by NM, 14-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg18a  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  (
( F `  Q
)  .\/  ( F `  P ) )  =/=  ( P  .\/  Q
) ) )  -> 
( P  .\/  ( F `  Q )
)  =/=  ( Q 
.\/  ( F `  P ) ) )

Proof of Theorem cdlemg18a
StepHypRef Expression
1 simp3r 1012 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  (
( F `  Q
)  .\/  ( F `  P ) )  =/=  ( P  .\/  Q
) ) )  -> 
( ( F `  Q )  .\/  ( F `  P )
)  =/=  ( P 
.\/  Q ) )
2 simpl1l 1034 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `  P )
)  =/=  ( P 
.\/  Q ) ) )  /\  ( P 
.\/  ( F `  Q ) )  =  ( Q  .\/  ( F `  P )
) )  ->  K  e.  HL )
3 simpl21 1061 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `  P )
)  =/=  ( P 
.\/  Q ) ) )  /\  ( P 
.\/  ( F `  Q ) )  =  ( Q  .\/  ( F `  P )
) )  ->  P  e.  A )
4 simpl1 986 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `  P )
)  =/=  ( P 
.\/  Q ) ) )  /\  ( P 
.\/  ( F `  Q ) )  =  ( Q  .\/  ( F `  P )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
5 simpl23 1063 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `  P )
)  =/=  ( P 
.\/  Q ) ) )  /\  ( P 
.\/  ( F `  Q ) )  =  ( Q  .\/  ( F `  P )
) )  ->  F  e.  T )
6 simpl22 1062 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `  P )
)  =/=  ( P 
.\/  Q ) ) )  /\  ( P 
.\/  ( F `  Q ) )  =  ( Q  .\/  ( F `  P )
) )  ->  Q  e.  A )
7 cdlemg12.l . . . . . . . 8  |-  .<_  =  ( le `  K )
8 cdlemg12.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
9 cdlemg12.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
10 cdlemg12.t . . . . . . . 8  |-  T  =  ( ( LTrn `  K
) `  W )
117, 8, 9, 10ltrnat 33506 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  Q  e.  A
)  ->  ( F `  Q )  e.  A
)
124, 5, 6, 11syl3anc 1213 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `  P )
)  =/=  ( P 
.\/  Q ) ) )  /\  ( P 
.\/  ( F `  Q ) )  =  ( Q  .\/  ( F `  P )
) )  ->  ( F `  Q )  e.  A )
137, 8, 9, 10ltrnat 33506 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
144, 5, 3, 13syl3anc 1213 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `  P )
)  =/=  ( P 
.\/  Q ) ) )  /\  ( P 
.\/  ( F `  Q ) )  =  ( Q  .\/  ( F `  P )
) )  ->  ( F `  P )  e.  A )
15 simpl3l 1038 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `  P )
)  =/=  ( P 
.\/  Q ) ) )  /\  ( P 
.\/  ( F `  Q ) )  =  ( Q  .\/  ( F `  P )
) )  ->  P  =/=  Q )
168, 9, 10ltrn11at 33513 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
) )  ->  ( F `  P )  =/=  ( F `  Q
) )
174, 5, 3, 6, 15, 16syl113anc 1225 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `  P )
)  =/=  ( P 
.\/  Q ) ) )  /\  ( P 
.\/  ( F `  Q ) )  =  ( Q  .\/  ( F `  P )
) )  ->  ( F `  P )  =/=  ( F `  Q
) )
1817necomd 2693 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `  P )
)  =/=  ( P 
.\/  Q ) ) )  /\  ( P 
.\/  ( F `  Q ) )  =  ( Q  .\/  ( F `  P )
) )  ->  ( F `  Q )  =/=  ( F `  P
) )
19 simpr 458 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `  P )
)  =/=  ( P 
.\/  Q ) ) )  /\  ( P 
.\/  ( F `  Q ) )  =  ( Q  .\/  ( F `  P )
) )  ->  ( P  .\/  ( F `  Q ) )  =  ( Q  .\/  ( F `  P )
) )
20 cdlemg12.j . . . . . . 7  |-  .\/  =  ( join `  K )
2120, 8hlatexch4 32847 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  Q )  e.  A )  /\  ( Q  e.  A  /\  ( F `  P
)  e.  A )  /\  ( P  =/= 
Q  /\  ( F `  Q )  =/=  ( F `  P )  /\  ( P  .\/  ( F `  Q )
)  =  ( Q 
.\/  ( F `  P ) ) ) )  ->  ( P  .\/  Q )  =  ( ( F `  Q
)  .\/  ( F `  P ) ) )
222, 3, 12, 6, 14, 15, 18, 19, 21syl323anc 1243 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `  P )
)  =/=  ( P 
.\/  Q ) ) )  /\  ( P 
.\/  ( F `  Q ) )  =  ( Q  .\/  ( F `  P )
) )  ->  ( P  .\/  Q )  =  ( ( F `  Q )  .\/  ( F `  P )
) )
2322eqcomd 2446 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `  P )
)  =/=  ( P 
.\/  Q ) ) )  /\  ( P 
.\/  ( F `  Q ) )  =  ( Q  .\/  ( F `  P )
) )  ->  (
( F `  Q
)  .\/  ( F `  P ) )  =  ( P  .\/  Q
) )
2423ex 434 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  (
( F `  Q
)  .\/  ( F `  P ) )  =/=  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  ( F `  Q ) )  =  ( Q 
.\/  ( F `  P ) )  -> 
( ( F `  Q )  .\/  ( F `  P )
)  =  ( P 
.\/  Q ) ) )
2524necon3d 2644 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  (
( F `  Q
)  .\/  ( F `  P ) )  =/=  ( P  .\/  Q
) ) )  -> 
( ( ( F `
 Q )  .\/  ( F `  P ) )  =/=  ( P 
.\/  Q )  -> 
( P  .\/  ( F `  Q )
)  =/=  ( Q 
.\/  ( F `  P ) ) ) )
261, 25mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  (
( F `  Q
)  .\/  ( F `  P ) )  =/=  ( P  .\/  Q
) ) )  -> 
( P  .\/  ( F `  Q )
)  =/=  ( Q 
.\/  ( F `  P ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   ` cfv 5415  (class class class)co 6090   lecple 14241   joincjn 15110   meetcmee 15111   Atomscatm 32630   HLchlt 32717   LHypclh 33350   LTrncltrn 33467   trLctrl 33524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-map 7212  df-poset 15112  df-plt 15124  df-lub 15140  df-glb 15141  df-join 15142  df-meet 15143  df-p0 15205  df-lat 15212  df-oposet 32543  df-ol 32545  df-oml 32546  df-covers 32633  df-ats 32634  df-atl 32665  df-cvlat 32689  df-hlat 32718  df-lhyp 33354  df-laut 33355  df-ldil 33470  df-ltrn 33471
This theorem is referenced by:  cdlemg18c  34046
  Copyright terms: Public domain W3C validator