Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs29pre00 Structured version   Visualization version   GIF version

Theorem cdlemefrs29pre00 34701
 Description: ***START OF VALUE AT ATOM STUFF TO REPLACE ONES BELOW*** FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat 34334. (Contributed by NM, 29-Mar-2013.)
Hypotheses
Ref Expression
cdlemefrs29.b 𝐵 = (Base‘𝐾)
cdlemefrs29.l = (le‘𝐾)
cdlemefrs29.j = (join‘𝐾)
cdlemefrs29.m = (meet‘𝐾)
cdlemefrs29.a 𝐴 = (Atoms‘𝐾)
cdlemefrs29.h 𝐻 = (LHyp‘𝐾)
cdlemefrs29.eq (𝑠 = 𝑅 → (𝜑𝜓))
Assertion
Ref Expression
cdlemefrs29pre00 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))

Proof of Theorem cdlemefrs29pre00
StepHypRef Expression
1 simpl3 1059 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → 𝜓)
2 cdlemefrs29.eq . . . . . . 7 (𝑠 = 𝑅 → (𝜑𝜓))
32pm5.32ri 668 . . . . . 6 ((𝜑𝑠 = 𝑅) ↔ (𝜓𝑠 = 𝑅))
43baibr 943 . . . . 5 (𝜓 → (𝑠 = 𝑅 ↔ (𝜑𝑠 = 𝑅)))
51, 4syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (𝑠 = 𝑅 ↔ (𝜑𝑠 = 𝑅)))
6 cdlemefrs29.l . . . . . . . . . 10 = (le‘𝐾)
7 cdlemefrs29.m . . . . . . . . . 10 = (meet‘𝐾)
8 eqid 2610 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
9 cdlemefrs29.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
10 cdlemefrs29.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
116, 7, 8, 9, 10lhpmat 34334 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (0.‘𝐾))
12113adant3 1074 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) → (𝑅 𝑊) = (0.‘𝐾))
1312adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (𝑅 𝑊) = (0.‘𝐾))
1413oveq2d 6565 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (𝑠 (𝑅 𝑊)) = (𝑠 (0.‘𝐾)))
15 simpl1l 1105 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → 𝐾 ∈ HL)
16 hlol 33666 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
1715, 16syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → 𝐾 ∈ OL)
18 cdlemefrs29.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
1918, 9atbase 33594 . . . . . . . 8 (𝑠𝐴𝑠𝐵)
2019adantl 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → 𝑠𝐵)
21 cdlemefrs29.j . . . . . . . 8 = (join‘𝐾)
2218, 21, 8olj01 33530 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑠𝐵) → (𝑠 (0.‘𝐾)) = 𝑠)
2317, 20, 22syl2anc 691 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (𝑠 (0.‘𝐾)) = 𝑠)
2414, 23eqtrd 2644 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (𝑠 (𝑅 𝑊)) = 𝑠)
2524eqeq1d 2612 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑠 = 𝑅))
2625anbi2d 736 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → ((𝜑 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (𝜑𝑠 = 𝑅)))
275, 25, 263bitr4d 299 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → ((𝑠 (𝑅 𝑊)) = 𝑅 ↔ (𝜑 ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))
2827anbi2d 736 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (¬ 𝑠 𝑊 ∧ (𝜑 ∧ (𝑠 (𝑅 𝑊)) = 𝑅))))
29 anass 679 . 2 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (¬ 𝑠 𝑊 ∧ (𝜑 ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))
3028, 29syl6rbbr 278 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  0.cp0 16860  OLcol 33479  Atomscatm 33568  HLchlt 33655  LHypclh 34288 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lhyp 34292 This theorem is referenced by:  cdlemefrs29clN  34705  cdlemefrs32fva  34706  cdlemefs29pre00N  34718
 Copyright terms: Public domain W3C validator