Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs29clN Structured version   Visualization version   GIF version

Theorem cdlemefrs29clN 34705
 Description: TODO: NOT USED? Show closure of the unique element in cdlemefrs29cpre1 34704. (Contributed by NM, 29-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefrs27.b 𝐵 = (Base‘𝐾)
cdlemefrs27.l = (le‘𝐾)
cdlemefrs27.j = (join‘𝐾)
cdlemefrs27.m = (meet‘𝐾)
cdlemefrs27.a 𝐴 = (Atoms‘𝐾)
cdlemefrs27.h 𝐻 = (LHyp‘𝐾)
cdlemefrs27.eq (𝑠 = 𝑅 → (𝜑𝜓))
cdlemefrs27.nb ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
cdlemefrs27.rnb ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅 / 𝑠𝑁𝐵)
cdlemefrs29cl.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
Assertion
Ref Expression
cdlemefrs29clN ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑂𝐵)
Distinct variable groups:   𝑧,𝑠,𝐴   𝐻,𝑠   ,𝑠   𝐾,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑊,𝑠   𝜓,𝑠   𝑧,𝐴   𝑧,𝐵   𝑧,𝐻   𝑧,𝐾   𝑧,   𝑧,𝑁   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,𝑊   𝜓,𝑧   𝐵,𝑠   𝑧,   ,𝑠,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑠)   𝑁(𝑠)   𝑂(𝑧,𝑠)

Proof of Theorem cdlemefrs29clN
StepHypRef Expression
1 simpl11 1129 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl2r 1108 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
3 simpl3 1059 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → 𝜓)
4 simpr 476 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → 𝑠𝐴)
5 cdlemefrs27.b . . . . . . . 8 𝐵 = (Base‘𝐾)
6 cdlemefrs27.l . . . . . . . 8 = (le‘𝐾)
7 cdlemefrs27.j . . . . . . . 8 = (join‘𝐾)
8 cdlemefrs27.m . . . . . . . 8 = (meet‘𝐾)
9 cdlemefrs27.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
10 cdlemefrs27.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
11 cdlemefrs27.eq . . . . . . . 8 (𝑠 = 𝑅 → (𝜑𝜓))
125, 6, 7, 8, 9, 10, 11cdlemefrs29pre00 34701 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))
131, 2, 3, 4, 12syl31anc 1321 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))
1413imbi1d 330 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → ((((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
1514ralbidva 2968 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
1615riotabidv 6513 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
17 cdlemefrs29cl.o . . 3 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
1816, 17syl6reqr 2663 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑂 = (𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
19 cdlemefrs27.nb . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
20 cdlemefrs27.rnb . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅 / 𝑠𝑁𝐵)
215, 6, 7, 8, 9, 10, 11, 19, 20cdlemefrs29cpre1 34704 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ∃!𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
22 riotacl 6525 . . 3 (∃!𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) → (𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) ∈ 𝐵)
2321, 22syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) ∈ 𝐵)
2418, 23eqeltrd 2688 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑂𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃!wreu 2898  ⦋csb 3499   class class class wbr 4583  ‘cfv 5804  ℩crio 6510  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Atomscatm 33568  HLchlt 33655  LHypclh 34288 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lhyp 34292 This theorem is referenced by:  cdlemefr29clN  34713  cdlemefs29clN  34725
 Copyright terms: Public domain W3C validator