Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1525 Structured version   Visualization version   GIF version

Theorem bnj1525 30391
 Description: Technical lemma for bnj1522 30394. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1525.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1525.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1525.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1525.4 𝐹 = 𝐶
bnj1525.5 (𝜑 ↔ (𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
bnj1525.6 (𝜓 ↔ (𝜑𝐹𝐻))
Assertion
Ref Expression
bnj1525 (𝜓 → ∀𝑥𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐻   𝑥,𝑅   𝑥,𝑑   𝑥,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑑)   𝜓(𝑥,𝑓,𝑑)   𝐴(𝑓,𝑑)   𝐵(𝑥,𝑓,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝑅(𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝐺(𝑥,𝑓,𝑑)   𝐻(𝑓,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1525
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1525.6 . . 3 (𝜓 ↔ (𝜑𝐹𝐻))
2 bnj1525.5 . . . . 5 (𝜑 ↔ (𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
3 nfv 1830 . . . . . 6 𝑥 𝑅 FrSe 𝐴
4 nfv 1830 . . . . . 6 𝑥 𝐻 Fn 𝐴
5 nfra1 2925 . . . . . 6 𝑥𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
63, 4, 5nf3an 1819 . . . . 5 𝑥(𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
72, 6nfxfr 1771 . . . 4 𝑥𝜑
8 bnj1525.4 . . . . . 6 𝐹 = 𝐶
9 bnj1525.3 . . . . . . . . 9 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
10 bnj1525.1 . . . . . . . . . 10 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
1110bnj1309 30344 . . . . . . . . 9 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
129, 11bnj1307 30345 . . . . . . . 8 (𝑤𝐶 → ∀𝑥 𝑤𝐶)
1312nfcii 2742 . . . . . . 7 𝑥𝐶
1413nfuni 4378 . . . . . 6 𝑥 𝐶
158, 14nfcxfr 2749 . . . . 5 𝑥𝐹
16 nfcv 2751 . . . . 5 𝑥𝐻
1715, 16nfne 2882 . . . 4 𝑥 𝐹𝐻
187, 17nfan 1816 . . 3 𝑥(𝜑𝐹𝐻)
191, 18nfxfr 1771 . 2 𝑥𝜓
2019nf5ri 2053 1 (𝜓 → ∀𝑥𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031  ∀wal 1473   = wceq 1475  {cab 2596   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540  ⟨cop 4131  ∪ cuni 4372   ↾ cres 5040   Fn wfn 5799  ‘cfv 5804   predc-bnj14 30007   FrSe w-bnj15 30011 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-uni 4373 This theorem is referenced by:  bnj1523  30393
 Copyright terms: Public domain W3C validator