Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axextdist Structured version   Visualization version   GIF version

Theorem axextdist 30949
Description: ax-ext 2590 with distinctors instead of distinct variable restrictions. (Contributed by Scott Fenton, 13-Dec-2010.)
Assertion
Ref Expression
axextdist ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦))

Proof of Theorem axextdist
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfnae 2306 . . . 4 𝑧 ¬ ∀𝑧 𝑧 = 𝑥
2 nfnae 2306 . . . 4 𝑧 ¬ ∀𝑧 𝑧 = 𝑦
31, 2nfan 1816 . . 3 𝑧(¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦)
4 nfcvf 2774 . . . . . 6 (¬ ∀𝑧 𝑧 = 𝑥𝑧𝑥)
54adantr 480 . . . . 5 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → 𝑧𝑥)
65nfcrd 2757 . . . 4 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑤𝑥)
7 nfcvf 2774 . . . . . 6 (¬ ∀𝑧 𝑧 = 𝑦𝑧𝑦)
87adantl 481 . . . . 5 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → 𝑧𝑦)
98nfcrd 2757 . . . 4 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑤𝑦)
106, 9nfbid 1820 . . 3 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧(𝑤𝑥𝑤𝑦))
11 elequ1 1984 . . . . 5 (𝑤 = 𝑧 → (𝑤𝑥𝑧𝑥))
12 elequ1 1984 . . . . 5 (𝑤 = 𝑧 → (𝑤𝑦𝑧𝑦))
1311, 12bibi12d 334 . . . 4 (𝑤 = 𝑧 → ((𝑤𝑥𝑤𝑦) ↔ (𝑧𝑥𝑧𝑦)))
1413a1i 11 . . 3 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑤 = 𝑧 → ((𝑤𝑥𝑤𝑦) ↔ (𝑧𝑥𝑧𝑦))))
153, 10, 14cbvald 2265 . 2 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑤(𝑤𝑥𝑤𝑦) ↔ ∀𝑧(𝑧𝑥𝑧𝑦)))
16 axext3 2592 . 2 (∀𝑤(𝑤𝑥𝑤𝑦) → 𝑥 = 𝑦)
1715, 16syl6bir 243 1 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wal 1473  wnfc 2738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-cleq 2603  df-clel 2606  df-nfc 2740
This theorem is referenced by:  axext4dist  30950
  Copyright terms: Public domain W3C validator