Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvco2 Structured version   Visualization version   GIF version

Theorem afvco2 39905
Description: Value of a function composition, analogous to fvco2 6183. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
afvco2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺'''𝑋)))

Proof of Theorem afvco2
StepHypRef Expression
1 fvco2 6183 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
21adantl 481 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
3 simpll 786 . . . . . 6 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐺𝑋) ∈ dom 𝐹)
4 df-fn 5807 . . . . . . . . 9 (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))
5 simpll 786 . . . . . . . . . 10 (((Fun 𝐺 ∧ dom 𝐺 = 𝐴) ∧ 𝑋𝐴) → Fun 𝐺)
6 eleq2 2677 . . . . . . . . . . . . . 14 (𝐴 = dom 𝐺 → (𝑋𝐴𝑋 ∈ dom 𝐺))
76eqcoms 2618 . . . . . . . . . . . . 13 (dom 𝐺 = 𝐴 → (𝑋𝐴𝑋 ∈ dom 𝐺))
87biimpd 218 . . . . . . . . . . . 12 (dom 𝐺 = 𝐴 → (𝑋𝐴𝑋 ∈ dom 𝐺))
98adantl 481 . . . . . . . . . . 11 ((Fun 𝐺 ∧ dom 𝐺 = 𝐴) → (𝑋𝐴𝑋 ∈ dom 𝐺))
109imp 444 . . . . . . . . . 10 (((Fun 𝐺 ∧ dom 𝐺 = 𝐴) ∧ 𝑋𝐴) → 𝑋 ∈ dom 𝐺)
115, 10jca 553 . . . . . . . . 9 (((Fun 𝐺 ∧ dom 𝐺 = 𝐴) ∧ 𝑋𝐴) → (Fun 𝐺𝑋 ∈ dom 𝐺))
124, 11sylanb 488 . . . . . . . 8 ((𝐺 Fn 𝐴𝑋𝐴) → (Fun 𝐺𝑋 ∈ dom 𝐺))
1312adantl 481 . . . . . . 7 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (Fun 𝐺𝑋 ∈ dom 𝐺))
14 dmfco 6182 . . . . . . 7 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
1513, 14syl 17 . . . . . 6 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
163, 15mpbird 246 . . . . 5 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → 𝑋 ∈ dom (𝐹𝐺))
17 funcoressn 39856 . . . . 5 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun ((𝐹𝐺) ↾ {𝑋}))
18 df-dfat 39845 . . . . . 6 ((𝐹𝐺) defAt 𝑋 ↔ (𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})))
19 afvfundmfveq 39867 . . . . . 6 ((𝐹𝐺) defAt 𝑋 → ((𝐹𝐺)'''𝑋) = ((𝐹𝐺)‘𝑋))
2018, 19sylbir 224 . . . . 5 ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) → ((𝐹𝐺)'''𝑋) = ((𝐹𝐺)‘𝑋))
2116, 17, 20syl2anc 691 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = ((𝐹𝐺)‘𝑋))
22 df-dfat 39845 . . . . . 6 (𝐹 defAt (𝐺𝑋) ↔ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})))
23 afvfundmfveq 39867 . . . . . 6 (𝐹 defAt (𝐺𝑋) → (𝐹'''(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))
2422, 23sylbir 224 . . . . 5 (((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → (𝐹'''(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))
2524adantr 480 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐹'''(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))
262, 21, 253eqtr4d 2654 . . 3 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺𝑋)))
27 ianor 508 . . . . . 6 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ↔ (¬ (𝐺𝑋) ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {(𝐺𝑋)})))
2814funfni 5905 . . . . . . . . . . 11 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
2928bicomd 212 . . . . . . . . . 10 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐺𝑋) ∈ dom 𝐹𝑋 ∈ dom (𝐹𝐺)))
3029notbid 307 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ (𝐺𝑋) ∈ dom 𝐹 ↔ ¬ 𝑋 ∈ dom (𝐹𝐺)))
3130biimpd 218 . . . . . . . 8 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ (𝐺𝑋) ∈ dom 𝐹 → ¬ 𝑋 ∈ dom (𝐹𝐺)))
32 ndmafv 39869 . . . . . . . 8 𝑋 ∈ dom (𝐹𝐺) → ((𝐹𝐺)'''𝑋) = V)
3331, 32syl6com 36 . . . . . . 7 (¬ (𝐺𝑋) ∈ dom 𝐹 → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
34 funressnfv 39857 . . . . . . . . . . . 12 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun (𝐹 ↾ {(𝐺𝑋)}))
3534ex 449 . . . . . . . . . . 11 ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) → ((𝐺 Fn 𝐴𝑋𝐴) → Fun (𝐹 ↾ {(𝐺𝑋)})))
36 afvnfundmuv 39868 . . . . . . . . . . . 12 (¬ (𝐹𝐺) defAt 𝑋 → ((𝐹𝐺)'''𝑋) = V)
3718, 36sylnbir 320 . . . . . . . . . . 11 (¬ (𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) → ((𝐹𝐺)'''𝑋) = V)
3835, 37nsyl4 155 . . . . . . . . . 10 (¬ ((𝐹𝐺)'''𝑋) = V → ((𝐺 Fn 𝐴𝑋𝐴) → Fun (𝐹 ↾ {(𝐺𝑋)})))
3938com12 32 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ ((𝐹𝐺)'''𝑋) = V → Fun (𝐹 ↾ {(𝐺𝑋)})))
4039con1d 138 . . . . . . . 8 ((𝐺 Fn 𝐴𝑋𝐴) → (¬ Fun (𝐹 ↾ {(𝐺𝑋)}) → ((𝐹𝐺)'''𝑋) = V))
4140com12 32 . . . . . . 7 (¬ Fun (𝐹 ↾ {(𝐺𝑋)}) → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
4233, 41jaoi 393 . . . . . 6 ((¬ (𝐺𝑋) ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {(𝐺𝑋)})) → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
4327, 42sylbi 206 . . . . 5 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = V))
4443imp 444 . . . 4 ((¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = V)
45 afvnfundmuv 39868 . . . . . . 7 𝐹 defAt (𝐺𝑋) → (𝐹'''(𝐺𝑋)) = V)
4622, 45sylnbir 320 . . . . . 6 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → (𝐹'''(𝐺𝑋)) = V)
4746eqcomd 2616 . . . . 5 (¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → V = (𝐹'''(𝐺𝑋)))
4847adantr 480 . . . 4 ((¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → V = (𝐹'''(𝐺𝑋)))
4944, 48eqtrd 2644 . . 3 ((¬ ((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺𝑋)))
5026, 49pm2.61ian 827 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺𝑋)))
51 eqidd 2611 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → 𝐹 = 𝐹)
524, 9sylbi 206 . . . . . 6 (𝐺 Fn 𝐴 → (𝑋𝐴𝑋 ∈ dom 𝐺))
5352imp 444 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → 𝑋 ∈ dom 𝐺)
54 fnfun 5902 . . . . . . 7 (𝐺 Fn 𝐴 → Fun 𝐺)
55 funres 5843 . . . . . . 7 (Fun 𝐺 → Fun (𝐺 ↾ {𝑋}))
5654, 55syl 17 . . . . . 6 (𝐺 Fn 𝐴 → Fun (𝐺 ↾ {𝑋}))
5756adantr 480 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → Fun (𝐺 ↾ {𝑋}))
58 df-dfat 39845 . . . . . 6 (𝐺 defAt 𝑋 ↔ (𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋})))
59 afvfundmfveq 39867 . . . . . 6 (𝐺 defAt 𝑋 → (𝐺'''𝑋) = (𝐺𝑋))
6058, 59sylbir 224 . . . . 5 ((𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋})) → (𝐺'''𝑋) = (𝐺𝑋))
6153, 57, 60syl2anc 691 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺'''𝑋) = (𝐺𝑋))
6261eqcomd 2616 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) = (𝐺'''𝑋))
6351, 62afveq12d 39862 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐹'''(𝐺𝑋)) = (𝐹'''(𝐺'''𝑋)))
6450, 63eqtrd 2644 1 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)'''𝑋) = (𝐹'''(𝐺'''𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  {csn 4125  dom cdm 5038  cres 5040  ccom 5042  Fun wfun 5798   Fn wfn 5799  cfv 5804   defAt wdfat 39842  '''cafv 39843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-dfat 39845  df-afv 39846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator