Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atexlemqtb | Structured version Visualization version GIF version |
Description: Lemma for 4atexlem7 34379. (Contributed by NM, 24-Nov-2012.) |
Ref | Expression |
---|---|
4thatlem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
4thatlempqb.j | ⊢ ∨ = (join‘𝐾) |
4thatlempqb.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
4atexlemqtb | ⊢ (𝜑 → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4thatlem.ph | . . 3 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) | |
2 | 1 | 4atexlemk 34351 | . 2 ⊢ (𝜑 → 𝐾 ∈ HL) |
3 | 1 | 4atexlemq 34355 | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
4 | 1 | 4atexlemt 34357 | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
5 | eqid 2610 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | 4thatlempqb.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | 4thatlempqb.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | 5, 6, 7 | hlatjcl 33671 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) |
9 | 2, 3, 4, 8 | syl3anc 1318 | 1 ⊢ (𝜑 → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 joincjn 16767 Atomscatm 33568 HLchlt 33655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-lub 16797 df-glb 16798 df-join 16799 df-meet 16800 df-lat 16869 df-ats 33572 df-atl 33603 df-cvlat 33627 df-hlat 33656 |
This theorem is referenced by: 4atexlemc 34373 4atexlemnclw 34374 4atexlemex2 34375 4atexlemcnd 34376 |
Copyright terms: Public domain | W3C validator |