Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim3i Structured version   Visualization version   GIF version

Theorem 3anim3i 1243
 Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim3i ((𝜒𝜃𝜑) → (𝜒𝜃𝜓))

Proof of Theorem 3anim3i
StepHypRef Expression
1 id 22 . 2 (𝜒𝜒)
2 id 22 . 2 (𝜃𝜃)
3 3animi.1 . 2 (𝜑𝜓)
41, 2, 33anim123i 1240 1 ((𝜒𝜃𝜑) → (𝜒𝜃𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033 This theorem is referenced by:  syl3anl3  1368  syl3anr3  1372  elioo4g  12105  ssnn0fi  12646  tmdcn2  21703  axcont  25656  constr3lem4  26175  extwwlkfab  26617  minvecolem3  27116  bnj556  30224  bnj557  30225  bnj1145  30315  btwnconn1lem4  31367  btwnconn1lem5  31368  btwnconn1lem6  31369  bj-ceqsalt  32069  bj-ceqsaltv  32070  1ewlk  41283  1pthon2ve  41321  av-numclwwlk3  41539
 Copyright terms: Public domain W3C validator