Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1145 Structured version   Visualization version   GIF version

Theorem bnj1145 30315
Description: Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1145.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1145.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1145.3 𝐷 = (ω ∖ {∅})
bnj1145.4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj1145.5 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1145.6 (𝜃 ↔ ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)))
Assertion
Ref Expression
bnj1145 trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴
Distinct variable groups:   𝐴,𝑓,𝑖,𝑗,𝑛,𝑦   𝐷,𝑖,𝑗   𝑅,𝑓,𝑖,𝑗,𝑛,𝑦   𝑓,𝑋,𝑖,𝑛,𝑦   𝜒,𝑗   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑗,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜒(𝑦,𝑓,𝑖,𝑛)   𝜃(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐵(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐷(𝑦,𝑓,𝑛)   𝑋(𝑗)

Proof of Theorem bnj1145
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1145.1 . . 3 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 bnj1145.2 . . 3 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj1145.3 . . 3 𝐷 = (ω ∖ {∅})
4 bnj1145.4 . . 3 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
51, 2, 3, 4bnj882 30250 . 2 trCl(𝑋, 𝐴, 𝑅) = 𝑓𝐵 𝑖 ∈ dom 𝑓(𝑓𝑖)
6 ss2iun 4472 . . . 4 (∀𝑓𝐵 𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ 𝐴 𝑓𝐵 𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ 𝑓𝐵 𝐴)
7 bnj1145.5 . . . . . . 7 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
87, 4bnj1083 30300 . . . . . 6 (𝑓𝐵 ↔ ∃𝑛𝜒)
92bnj1095 30106 . . . . . . . . 9 (𝜓 → ∀𝑖𝜓)
109, 7bnj1096 30107 . . . . . . . 8 (𝜒 → ∀𝑖𝜒)
113bnj1098 30108 . . . . . . . . . . . . . . . . 17 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
127bnj1232 30128 . . . . . . . . . . . . . . . . . 18 (𝜒𝑛𝐷)
13123anim3i 1243 . . . . . . . . . . . . . . . . 17 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷))
1411, 13bnj1101 30109 . . . . . . . . . . . . . . . 16 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → (𝑗𝑛𝑖 = suc 𝑗))
15 ancl 567 . . . . . . . . . . . . . . . 16 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → (𝑗𝑛𝑖 = suc 𝑗)) → ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗))))
1614, 15bnj101 30043 . . . . . . . . . . . . . . 15 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)))
17 bnj1145.6 . . . . . . . . . . . . . . . . 17 (𝜃 ↔ ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)))
1817imbi2i 325 . . . . . . . . . . . . . . . 16 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → 𝜃) ↔ ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗))))
1918exbii 1764 . . . . . . . . . . . . . . 15 (∃𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → 𝜃) ↔ ∃𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗))))
2016, 19mpbir 220 . . . . . . . . . . . . . 14 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → 𝜃)
21 bnj213 30206 . . . . . . . . . . . . . . . 16 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
2221bnj226 30056 . . . . . . . . . . . . . . 15 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
23 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑛𝑖 = suc 𝑗) → 𝑖 = suc 𝑗)
2417, 23simplbiim 657 . . . . . . . . . . . . . . . . . 18 (𝜃𝑖 = suc 𝑗)
25 simp2 1055 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → 𝑖𝑛)
26123ad2ant3 1077 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → 𝑛𝐷)
273bnj923 30092 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝐷𝑛 ∈ ω)
28 elnn 6967 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑛𝑛 ∈ ω) → 𝑖 ∈ ω)
2927, 28sylan2 490 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑛𝑛𝐷) → 𝑖 ∈ ω)
3025, 26, 29syl2anc 691 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → 𝑖 ∈ ω)
3117, 30bnj832 30082 . . . . . . . . . . . . . . . . . 18 (𝜃𝑖 ∈ ω)
32 vex 3176 . . . . . . . . . . . . . . . . . . . 20 𝑗 ∈ V
3332bnj216 30054 . . . . . . . . . . . . . . . . . . 19 (𝑖 = suc 𝑗𝑗𝑖)
34 elnn 6967 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑖𝑖 ∈ ω) → 𝑗 ∈ ω)
3533, 34sylan 487 . . . . . . . . . . . . . . . . . 18 ((𝑖 = suc 𝑗𝑖 ∈ ω) → 𝑗 ∈ ω)
3624, 31, 35syl2anc 691 . . . . . . . . . . . . . . . . 17 (𝜃𝑗 ∈ ω)
3717, 25bnj832 30082 . . . . . . . . . . . . . . . . . 18 (𝜃𝑖𝑛)
3824, 37eqeltrrd 2689 . . . . . . . . . . . . . . . . 17 (𝜃 → suc 𝑗𝑛)
392bnj589 30233 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜓 ↔ ∀𝑗 ∈ ω (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
4039biimpi 205 . . . . . . . . . . . . . . . . . . . . . 22 (𝜓 → ∀𝑗 ∈ ω (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
4140bnj708 30080 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛𝐷𝑓 Fn 𝑛𝜑𝜓) → ∀𝑗 ∈ ω (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
42 rsp 2913 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑗 ∈ ω (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)) → (𝑗 ∈ ω → (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛𝐷𝑓 Fn 𝑛𝜑𝜓) → (𝑗 ∈ ω → (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
447, 43sylbi 206 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑗 ∈ ω → (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
45443ad2ant3 1077 . . . . . . . . . . . . . . . . . 18 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → (𝑗 ∈ ω → (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
4617, 45bnj832 30082 . . . . . . . . . . . . . . . . 17 (𝜃 → (𝑗 ∈ ω → (suc 𝑗𝑛 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
4736, 38, 46mp2d 47 . . . . . . . . . . . . . . . 16 (𝜃 → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))
48 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑖 = suc 𝑗 → (𝑓𝑖) = (𝑓‘suc 𝑗))
4948eqeq1d 2612 . . . . . . . . . . . . . . . . 17 (𝑖 = suc 𝑗 → ((𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
5024, 49syl 17 . . . . . . . . . . . . . . . 16 (𝜃 → ((𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
5147, 50mpbird 246 . . . . . . . . . . . . . . 15 (𝜃 → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))
5222, 51bnj1262 30135 . . . . . . . . . . . . . 14 (𝜃 → (𝑓𝑖) ⊆ 𝐴)
5320, 52bnj1023 30105 . . . . . . . . . . . . 13 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → (𝑓𝑖) ⊆ 𝐴)
54 3anass 1035 . . . . . . . . . . . . . . 15 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) ↔ (𝑖 ≠ ∅ ∧ (𝑖𝑛𝜒)))
5554imbi1i 338 . . . . . . . . . . . . . 14 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → (𝑓𝑖) ⊆ 𝐴) ↔ ((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜒)) → (𝑓𝑖) ⊆ 𝐴))
5655exbii 1764 . . . . . . . . . . . . 13 (∃𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) → (𝑓𝑖) ⊆ 𝐴) ↔ ∃𝑗((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜒)) → (𝑓𝑖) ⊆ 𝐴))
5753, 56mpbi 219 . . . . . . . . . . . 12 𝑗((𝑖 ≠ ∅ ∧ (𝑖𝑛𝜒)) → (𝑓𝑖) ⊆ 𝐴)
581biimpi 205 . . . . . . . . . . . . . . 15 (𝜑 → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
597, 58bnj771 30088 . . . . . . . . . . . . . 14 (𝜒 → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
60 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑖 = ∅ → (𝑓𝑖) = (𝑓‘∅))
61 bnj213 30206 . . . . . . . . . . . . . . . 16 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴
62 sseq1 3589 . . . . . . . . . . . . . . . 16 ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) → ((𝑓‘∅) ⊆ 𝐴 ↔ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴))
6361, 62mpbiri 247 . . . . . . . . . . . . . . 15 ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) → (𝑓‘∅) ⊆ 𝐴)
64 sseq1 3589 . . . . . . . . . . . . . . . 16 ((𝑓𝑖) = (𝑓‘∅) → ((𝑓𝑖) ⊆ 𝐴 ↔ (𝑓‘∅) ⊆ 𝐴))
6564biimpar 501 . . . . . . . . . . . . . . 15 (((𝑓𝑖) = (𝑓‘∅) ∧ (𝑓‘∅) ⊆ 𝐴) → (𝑓𝑖) ⊆ 𝐴)
6660, 63, 65syl2an 493 . . . . . . . . . . . . . 14 ((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) → (𝑓𝑖) ⊆ 𝐴)
6759, 66sylan2 490 . . . . . . . . . . . . 13 ((𝑖 = ∅ ∧ 𝜒) → (𝑓𝑖) ⊆ 𝐴)
6867adantrl 748 . . . . . . . . . . . 12 ((𝑖 = ∅ ∧ (𝑖𝑛𝜒)) → (𝑓𝑖) ⊆ 𝐴)
6957, 68bnj1109 30111 . . . . . . . . . . 11 𝑗((𝑖𝑛𝜒) → (𝑓𝑖) ⊆ 𝐴)
70 19.9v 1883 . . . . . . . . . . 11 (∃𝑗((𝑖𝑛𝜒) → (𝑓𝑖) ⊆ 𝐴) ↔ ((𝑖𝑛𝜒) → (𝑓𝑖) ⊆ 𝐴))
7169, 70mpbi 219 . . . . . . . . . 10 ((𝑖𝑛𝜒) → (𝑓𝑖) ⊆ 𝐴)
7271expcom 450 . . . . . . . . 9 (𝜒 → (𝑖𝑛 → (𝑓𝑖) ⊆ 𝐴))
73 fndm 5904 . . . . . . . . . . 11 (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛)
747, 73bnj770 30087 . . . . . . . . . 10 (𝜒 → dom 𝑓 = 𝑛)
75 eleq2 2677 . . . . . . . . . . 11 (dom 𝑓 = 𝑛 → (𝑖 ∈ dom 𝑓𝑖𝑛))
7675imbi1d 330 . . . . . . . . . 10 (dom 𝑓 = 𝑛 → ((𝑖 ∈ dom 𝑓 → (𝑓𝑖) ⊆ 𝐴) ↔ (𝑖𝑛 → (𝑓𝑖) ⊆ 𝐴)))
7774, 76syl 17 . . . . . . . . 9 (𝜒 → ((𝑖 ∈ dom 𝑓 → (𝑓𝑖) ⊆ 𝐴) ↔ (𝑖𝑛 → (𝑓𝑖) ⊆ 𝐴)))
7872, 77mpbird 246 . . . . . . . 8 (𝜒 → (𝑖 ∈ dom 𝑓 → (𝑓𝑖) ⊆ 𝐴))
7910, 78hbralrimi 2937 . . . . . . 7 (𝜒 → ∀𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ 𝐴)
8079exlimiv 1845 . . . . . 6 (∃𝑛𝜒 → ∀𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ 𝐴)
818, 80sylbi 206 . . . . 5 (𝑓𝐵 → ∀𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ 𝐴)
82 ss2iun 4472 . . . . . 6 (∀𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ 𝐴 𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ 𝑖 ∈ dom 𝑓 𝐴)
83 bnj1143 30115 . . . . . 6 𝑖 ∈ dom 𝑓 𝐴𝐴
8482, 83syl6ss 3580 . . . . 5 (∀𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ 𝐴 𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ 𝐴)
8581, 84syl 17 . . . 4 (𝑓𝐵 𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ 𝐴)
866, 85mprg 2910 . . 3 𝑓𝐵 𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ 𝑓𝐵 𝐴
874bnj1317 30146 . . . 4 (𝑤𝐵 → ∀𝑓 𝑤𝐵)
8887bnj1146 30116 . . 3 𝑓𝐵 𝐴𝐴
8986, 88sstri 3577 . 2 𝑓𝐵 𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ 𝐴
905, 89eqsstri 3598 1 trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  cdif 3537  wss 3540  c0 3874  {csn 4125   ciun 4455  dom cdm 5038  suc csuc 5642   Fn wfn 5799  cfv 5804  ωcom 6957  w-bnj17 30005   predc-bnj14 30007   trClc-bnj18 30013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fn 5807  df-fv 5812  df-om 6958  df-bnj17 30006  df-bnj14 30008  df-bnj18 30014
This theorem is referenced by:  bnj1147  30316
  Copyright terms: Public domain W3C validator