MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlkonotv Structured version   Visualization version   GIF version

Theorem 2wlkonotv 26404
Description: If an ordered tripple represents a walk of length 2, its components are vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.)
Assertion
Ref Expression
2wlkonotv (⟨𝐴, 𝐵, 𝐶⟩ ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))

Proof of Theorem 2wlkonotv
StepHypRef Expression
1 2wlkonot3v 26402 . 2 (⟨𝐴, 𝐵, 𝐶⟩ ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐶𝑉) ∧ ⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝑉 × 𝑉) × 𝑉)))
2 3simpb 1052 . 2 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐶𝑉) ∧ ⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝑉 × 𝑉) × 𝑉)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ ⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝑉 × 𝑉) × 𝑉)))
3 df-ot 4134 . . . . 5 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
43eleq1i 2679 . . . 4 (⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝑉 × 𝑉) × 𝑉) ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝑉 × 𝑉) × 𝑉))
5 opelxp 5070 . . . . 5 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝑉 × 𝑉) × 𝑉) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉) ∧ 𝐶𝑉))
6 opelxp 5070 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉) ↔ (𝐴𝑉𝐵𝑉))
7 df-3an 1033 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ ((𝐴𝑉𝐵𝑉) ∧ 𝐶𝑉))
87biimpri 217 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ 𝐶𝑉) → (𝐴𝑉𝐵𝑉𝐶𝑉))
96, 8sylanb 488 . . . . 5 ((⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉) ∧ 𝐶𝑉) → (𝐴𝑉𝐵𝑉𝐶𝑉))
105, 9sylbi 206 . . . 4 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝑉 × 𝑉) × 𝑉) → (𝐴𝑉𝐵𝑉𝐶𝑉))
114, 10sylbi 206 . . 3 (⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝑉 × 𝑉) × 𝑉) → (𝐴𝑉𝐵𝑉𝐶𝑉))
1211anim2i 591 . 2 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ ⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝑉 × 𝑉) × 𝑉)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))
131, 2, 123syl 18 1 (⟨𝐴, 𝐵, 𝐶⟩ ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031  wcel 1977  Vcvv 3173  cop 4131  cotp 4133   × cxp 5036  (class class class)co 6549   2WalksOnOt c2wlkonot 26382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-ot 4134  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-2wlkonot 26385
This theorem is referenced by:  frg2woteqm  26586
  Copyright terms: Public domain W3C validator