Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0elsiga Structured version   Visualization version   GIF version

Theorem 0elsiga 29504
 Description: A sigma-algebra contains the empty set. (Contributed by Thierry Arnoux, 4-Sep-2016.)
Assertion
Ref Expression
0elsiga (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)

Proof of Theorem 0elsiga
Dummy variables 𝑜 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isrnsiga 29503 . . 3 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
21simprbi 479 . 2 (𝑆 ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3 3simpa 1051 . . . 4 ((𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
43adantl 481 . . 3 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
54eximi 1752 . 2 (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → ∃𝑜(𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
6 difeq2 3684 . . . . . 6 (𝑥 = 𝑜 → (𝑜𝑥) = (𝑜𝑜))
7 difid 3902 . . . . . 6 (𝑜𝑜) = ∅
86, 7syl6eq 2660 . . . . 5 (𝑥 = 𝑜 → (𝑜𝑥) = ∅)
98eleq1d 2672 . . . 4 (𝑥 = 𝑜 → ((𝑜𝑥) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
109rspcva 3280 . . 3 ((𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆) → ∅ ∈ 𝑆)
1110exlimiv 1845 . 2 (∃𝑜(𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆) → ∅ ∈ 𝑆)
122, 5, 113syl 18 1 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031  ∃wex 1695   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  ∪ cuni 4372   class class class wbr 4583  ran crn 5039  ωcom 6957   ≼ cdom 7839  sigAlgebracsiga 29497 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-siga 29498 This theorem is referenced by:  sigaclfu2  29511  sigaldsys  29549  brsiga  29573  measvuni  29604  measinb  29611  measres  29612  measdivcstOLD  29614  measdivcst  29615  cntmeas  29616  volmeas  29621  mbfmcst  29648  sibfof  29729  nuleldmp  29806  0rrv  29840  dstrvprob  29860
 Copyright terms: Public domain W3C validator