ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsonq GIF version

Theorem ltsonq 6496
Description: 'Less than' is a strict ordering on positive fractions. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 4-May-2013.)
Assertion
Ref Expression
ltsonq <Q Or Q

Proof of Theorem ltsonq
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6446 . . . . . 6 Q = ((N × N) / ~Q )
2 id 19 . . . . . . . 8 ([⟨𝑧, 𝑤⟩] ~Q = 𝑥 → [⟨𝑧, 𝑤⟩] ~Q = 𝑥)
32, 2breq12d 3777 . . . . . . 7 ([⟨𝑧, 𝑤⟩] ~Q = 𝑥 → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q𝑥 <Q 𝑥))
43notbid 592 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~Q = 𝑥 → (¬ [⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ¬ 𝑥 <Q 𝑥))
5 ltsopi 6418 . . . . . . . 8 <N Or N
6 ltrelpi 6422 . . . . . . . 8 <N ⊆ (N × N)
75, 6soirri 4719 . . . . . . 7 ¬ (𝑤 ·N 𝑧) <N (𝑤 ·N 𝑧)
8 ordpipqqs 6472 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑧N𝑤N)) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑧 ·N 𝑤) <N (𝑤 ·N 𝑧)))
98anidms 377 . . . . . . . 8 ((𝑧N𝑤N) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑧 ·N 𝑤) <N (𝑤 ·N 𝑧)))
10 mulcompig 6429 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 ·N 𝑤) = (𝑤 ·N 𝑧))
1110breq1d 3774 . . . . . . . 8 ((𝑧N𝑤N) → ((𝑧 ·N 𝑤) <N (𝑤 ·N 𝑧) ↔ (𝑤 ·N 𝑧) <N (𝑤 ·N 𝑧)))
129, 11bitrd 177 . . . . . . 7 ((𝑧N𝑤N) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑤 ·N 𝑧) <N (𝑤 ·N 𝑧)))
137, 12mtbiri 600 . . . . . 6 ((𝑧N𝑤N) → ¬ [⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q )
141, 4, 13ecoptocl 6193 . . . . 5 (𝑥Q → ¬ 𝑥 <Q 𝑥)
1514adantl 262 . . . 4 ((⊤ ∧ 𝑥Q) → ¬ 𝑥 <Q 𝑥)
16 breq1 3767 . . . . . . . 8 ([⟨𝑎, 𝑏⟩] ~Q = 𝑥 → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q ))
1716anbi1d 438 . . . . . . 7 ([⟨𝑎, 𝑏⟩] ~Q = 𝑥 → (([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ (𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )))
18 breq1 3767 . . . . . . 7 ([⟨𝑎, 𝑏⟩] ~Q = 𝑥 → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q ))
1917, 18imbi12d 223 . . . . . 6 ([⟨𝑎, 𝑏⟩] ~Q = 𝑥 → ((([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) → [⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ ((𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) → 𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q )))
20 breq2 3768 . . . . . . . 8 ([⟨𝑐, 𝑑⟩] ~Q = 𝑦 → (𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q𝑥 <Q 𝑦))
21 breq1 3767 . . . . . . . 8 ([⟨𝑐, 𝑑⟩] ~Q = 𝑦 → ([⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q ))
2220, 21anbi12d 442 . . . . . . 7 ([⟨𝑐, 𝑑⟩] ~Q = 𝑦 → ((𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ (𝑥 <Q 𝑦𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q )))
2322imbi1d 220 . . . . . 6 ([⟨𝑐, 𝑑⟩] ~Q = 𝑦 → (((𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) → 𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ ((𝑥 <Q 𝑦𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q ) → 𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q )))
24 breq2 3768 . . . . . . . 8 ([⟨𝑒, 𝑓⟩] ~Q = 𝑧 → (𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q𝑦 <Q 𝑧))
2524anbi2d 437 . . . . . . 7 ([⟨𝑒, 𝑓⟩] ~Q = 𝑧 → ((𝑥 <Q 𝑦𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ (𝑥 <Q 𝑦𝑦 <Q 𝑧)))
26 breq2 3768 . . . . . . 7 ([⟨𝑒, 𝑓⟩] ~Q = 𝑧 → (𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q𝑥 <Q 𝑧))
2725, 26imbi12d 223 . . . . . 6 ([⟨𝑒, 𝑓⟩] ~Q = 𝑧 → (((𝑥 <Q 𝑦𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q ) → 𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ ((𝑥 <Q 𝑦𝑦 <Q 𝑧) → 𝑥 <Q 𝑧)))
28 ordpipqqs 6472 . . . . . . . . . . . . . . . 16 (((𝑎N𝑏N) ∧ (𝑐N𝑑N)) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ↔ (𝑎 ·N 𝑑) <N (𝑏 ·N 𝑐)))
29283adant3 924 . . . . . . . . . . . . . . 15 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ↔ (𝑎 ·N 𝑑) <N (𝑏 ·N 𝑐)))
30 simp1l 928 . . . . . . . . . . . . . . . . 17 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑎N)
31 simp2r 931 . . . . . . . . . . . . . . . . 17 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑑N)
32 mulclpi 6426 . . . . . . . . . . . . . . . . 17 ((𝑎N𝑑N) → (𝑎 ·N 𝑑) ∈ N)
3330, 31, 32syl2anc 391 . . . . . . . . . . . . . . . 16 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑎 ·N 𝑑) ∈ N)
34 simp1r 929 . . . . . . . . . . . . . . . . 17 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑏N)
35 simp2l 930 . . . . . . . . . . . . . . . . 17 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑐N)
36 mulclpi 6426 . . . . . . . . . . . . . . . . 17 ((𝑏N𝑐N) → (𝑏 ·N 𝑐) ∈ N)
3734, 35, 36syl2anc 391 . . . . . . . . . . . . . . . 16 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑏 ·N 𝑐) ∈ N)
38 simp3r 933 . . . . . . . . . . . . . . . . 17 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑓N)
39 mulclpi 6426 . . . . . . . . . . . . . . . . 17 ((𝑐N𝑓N) → (𝑐 ·N 𝑓) ∈ N)
4035, 38, 39syl2anc 391 . . . . . . . . . . . . . . . 16 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑐 ·N 𝑓) ∈ N)
41 ltmpig 6437 . . . . . . . . . . . . . . . 16 (((𝑎 ·N 𝑑) ∈ N ∧ (𝑏 ·N 𝑐) ∈ N ∧ (𝑐 ·N 𝑓) ∈ N) → ((𝑎 ·N 𝑑) <N (𝑏 ·N 𝑐) ↔ ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐))))
4233, 37, 40, 41syl3anc 1135 . . . . . . . . . . . . . . 15 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑎 ·N 𝑑) <N (𝑏 ·N 𝑐) ↔ ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐))))
4329, 42bitrd 177 . . . . . . . . . . . . . 14 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ↔ ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐))))
4443biimpa 280 . . . . . . . . . . . . 13 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ [⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ) → ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐)))
4544adantrr 448 . . . . . . . . . . . 12 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐)))
46 mulcompig 6429 . . . . . . . . . . . . . 14 (((𝑐 ·N 𝑓) ∈ N ∧ (𝑏 ·N 𝑐) ∈ N) → ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐)) = ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)))
4740, 37, 46syl2anc 391 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐)) = ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)))
4847adantr 261 . . . . . . . . . . . 12 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐)) = ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)))
4945, 48breqtrd 3788 . . . . . . . . . . 11 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)))
50 ordpipqqs 6472 . . . . . . . . . . . . . . 15 (((𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ (𝑐 ·N 𝑓) <N (𝑑 ·N 𝑒)))
51503adant1 922 . . . . . . . . . . . . . 14 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ (𝑐 ·N 𝑓) <N (𝑑 ·N 𝑒)))
52 simp3l 932 . . . . . . . . . . . . . . . 16 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑒N)
53 mulclpi 6426 . . . . . . . . . . . . . . . 16 ((𝑑N𝑒N) → (𝑑 ·N 𝑒) ∈ N)
5431, 52, 53syl2anc 391 . . . . . . . . . . . . . . 15 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑑 ·N 𝑒) ∈ N)
55 ltmpig 6437 . . . . . . . . . . . . . . 15 (((𝑐 ·N 𝑓) ∈ N ∧ (𝑑 ·N 𝑒) ∈ N ∧ (𝑏 ·N 𝑐) ∈ N) → ((𝑐 ·N 𝑓) <N (𝑑 ·N 𝑒) ↔ ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))))
5640, 54, 37, 55syl3anc 1135 . . . . . . . . . . . . . 14 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑓) <N (𝑑 ·N 𝑒) ↔ ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))))
5751, 56bitrd 177 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))))
5857biimpa 280 . . . . . . . . . . . 12 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) → ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
5958adantrl 447 . . . . . . . . . . 11 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
605, 6sotri 4720 . . . . . . . . . . 11 ((((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) ∧ ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))) → ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
6149, 59, 60syl2anc 391 . . . . . . . . . 10 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
62 mulcompig 6429 . . . . . . . . . . . . . . 15 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
6362adantl 262 . . . . . . . . . . . . . 14 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
64 mulasspig 6430 . . . . . . . . . . . . . . 15 ((𝑥N𝑦N𝑧N) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
6564adantl 262 . . . . . . . . . . . . . 14 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ (𝑥N𝑦N𝑧N)) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
66 mulclpi 6426 . . . . . . . . . . . . . . 15 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
6766adantl 262 . . . . . . . . . . . . . 14 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) ∈ N)
6835, 31, 30, 63, 65, 38, 67caov411d 5686 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) = ((𝑎 ·N 𝑑) ·N (𝑐 ·N 𝑓)))
6963, 33, 40caovcomd 5657 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑎 ·N 𝑑) ·N (𝑐 ·N 𝑓)) = ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)))
7068, 69eqtrd 2072 . . . . . . . . . . . 12 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) = ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)))
7135, 31, 34, 63, 65, 52, 67caov4d 5685 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒)) = ((𝑐 ·N 𝑏) ·N (𝑑 ·N 𝑒)))
7263, 35, 34caovcomd 5657 . . . . . . . . . . . . . 14 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑐 ·N 𝑏) = (𝑏 ·N 𝑐))
7372oveq1d 5527 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑏) ·N (𝑑 ·N 𝑒)) = ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
7471, 73eqtrd 2072 . . . . . . . . . . . 12 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒)) = ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
7570, 74breq12d 3777 . . . . . . . . . . 11 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒)) ↔ ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))))
7675adantr 261 . . . . . . . . . 10 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → (((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒)) ↔ ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))))
7761, 76mpbird 156 . . . . . . . . 9 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒)))
78 mulclpi 6426 . . . . . . . . . . . 12 ((𝑎N𝑓N) → (𝑎 ·N 𝑓) ∈ N)
7930, 38, 78syl2anc 391 . . . . . . . . . . 11 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑎 ·N 𝑓) ∈ N)
80 mulclpi 6426 . . . . . . . . . . . 12 ((𝑏N𝑒N) → (𝑏 ·N 𝑒) ∈ N)
8134, 52, 80syl2anc 391 . . . . . . . . . . 11 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑏 ·N 𝑒) ∈ N)
82 mulclpi 6426 . . . . . . . . . . . 12 ((𝑐N𝑑N) → (𝑐 ·N 𝑑) ∈ N)
8335, 31, 82syl2anc 391 . . . . . . . . . . 11 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑐 ·N 𝑑) ∈ N)
84 ltmpig 6437 . . . . . . . . . . 11 (((𝑎 ·N 𝑓) ∈ N ∧ (𝑏 ·N 𝑒) ∈ N ∧ (𝑐 ·N 𝑑) ∈ N) → ((𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒) ↔ ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒))))
8579, 81, 83, 84syl3anc 1135 . . . . . . . . . 10 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒) ↔ ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒))))
8685adantr 261 . . . . . . . . 9 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒) ↔ ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒))))
8777, 86mpbird 156 . . . . . . . 8 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → (𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒))
88 ordpipqqs 6472 . . . . . . . . . 10 (((𝑎N𝑏N) ∧ (𝑒N𝑓N)) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ (𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒)))
89883adant2 923 . . . . . . . . 9 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ (𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒)))
9089adantr 261 . . . . . . . 8 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ (𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒)))
9187, 90mpbird 156 . . . . . . 7 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → [⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )
9291ex 108 . . . . . 6 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) → [⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ))
931, 19, 23, 27, 923ecoptocl 6195 . . . . 5 ((𝑥Q𝑦Q𝑧Q) → ((𝑥 <Q 𝑦𝑦 <Q 𝑧) → 𝑥 <Q 𝑧))
9493adantl 262 . . . 4 ((⊤ ∧ (𝑥Q𝑦Q𝑧Q)) → ((𝑥 <Q 𝑦𝑦 <Q 𝑧) → 𝑥 <Q 𝑧))
9515, 94ispod 4041 . . 3 (⊤ → <Q Po Q)
96 nqtri3or 6494 . . . 4 ((𝑥Q𝑦Q) → (𝑥 <Q 𝑦𝑥 = 𝑦𝑦 <Q 𝑥))
9796adantl 262 . . 3 ((⊤ ∧ (𝑥Q𝑦Q)) → (𝑥 <Q 𝑦𝑥 = 𝑦𝑦 <Q 𝑥))
9895, 97issod 4056 . 2 (⊤ → <Q Or Q)
9998trud 1252 1 <Q Or Q
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  w3o 884  w3a 885   = wceq 1243  wtru 1244  wcel 1393  cop 3378   class class class wbr 3764   Or wor 4032  (class class class)co 5512  [cec 6104  Ncnpi 6370   ·N cmi 6372   <N clti 6373   ~Q ceq 6377  Qcnq 6378   <Q cltq 6383
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-mi 6404  df-lti 6405  df-enq 6445  df-nqqs 6446  df-ltnqqs 6451
This theorem is referenced by:  nqtric  6497  lt2addnq  6502  lt2mulnq  6503  ltbtwnnqq  6513  prarloclemarch2  6517  genplt2i  6608  genpdisj  6621  addlocprlemgt  6632  nqprdisj  6642  nqprloc  6643  addnqprlemfl  6657  addnqprlemfu  6658  prmuloclemcalc  6663  mulnqprlemfl  6673  mulnqprlemfu  6674  distrlem4prl  6682  distrlem4pru  6683  ltsopr  6694  ltexprlemopl  6699  ltexprlemopu  6701  ltexprlemdisj  6704  ltexprlemru  6710  recexprlemlol  6724  recexprlemupu  6726  recexprlemdisj  6728  recexprlemss1l  6733  recexprlemss1u  6734  cauappcvgprlemopl  6744  cauappcvgprlemlol  6745  cauappcvgprlemupu  6747  cauappcvgprlemdisj  6749  cauappcvgprlemloc  6750  cauappcvgprlemladdfu  6752  cauappcvgprlemladdru  6754  cauappcvgprlemladdrl  6755  caucvgprlemk  6763  caucvgprlemnkj  6764  caucvgprlemnbj  6765  caucvgprlemm  6766  caucvgprlemopl  6767  caucvgprlemlol  6768  caucvgprlemupu  6770  caucvgprlemloc  6773  caucvgprlemladdfu  6775  caucvgprprlemloccalc  6782  caucvgprprlemml  6792  caucvgprprlemopl  6795
  Copyright terms: Public domain W3C validator