ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpipqqs GIF version

Theorem ordpipqqs 6472
Description: Ordering of positive fractions in terms of positive integers. (Contributed by Jim Kingdon, 14-Sep-2019.)
Assertion
Ref Expression
ordpipqqs (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q <Q [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶)))

Proof of Theorem ordpipqqs
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enqex 6458 . 2 ~Q ∈ V
2 enqer 6456 . 2 ~Q Er (N × N)
3 df-nqqs 6446 . 2 Q = ((N × N) / ~Q )
4 df-ltnqqs 6451 . 2 <Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~Q𝑦 = [⟨𝑣, 𝑢⟩] ~Q ) ∧ (𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣)))}
5 enqeceq 6457 . . . . 5 (((𝑧N𝑤N) ∧ (𝐴N𝐵N)) → ([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ↔ (𝑧 ·N 𝐵) = (𝑤 ·N 𝐴)))
6 enqeceq 6457 . . . . . 6 (((𝑣N𝑢N) ∧ (𝐶N𝐷N)) → ([⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝑣 ·N 𝐷) = (𝑢 ·N 𝐶)))
7 eqcom 2042 . . . . . 6 ((𝑣 ·N 𝐷) = (𝑢 ·N 𝐶) ↔ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷))
86, 7syl6bb 185 . . . . 5 (((𝑣N𝑢N) ∧ (𝐶N𝐷N)) → ([⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷)))
95, 8bi2anan9 538 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ∧ [⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ) ↔ ((𝑧 ·N 𝐵) = (𝑤 ·N 𝐴) ∧ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷))))
10 oveq12 5521 . . . . 5 (((𝑧 ·N 𝐵) = (𝑤 ·N 𝐴) ∧ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷)) → ((𝑧 ·N 𝐵) ·N (𝑢 ·N 𝐶)) = ((𝑤 ·N 𝐴) ·N (𝑣 ·N 𝐷)))
11 simplll 485 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑧N)
12 simprlr 490 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑢N)
13 simplrr 488 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐵N)
14 mulcompig 6429 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
1514adantl 262 . . . . . . 7 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
16 mulasspig 6430 . . . . . . . 8 ((𝑥N𝑦N𝑓N) → ((𝑥 ·N 𝑦) ·N 𝑓) = (𝑥 ·N (𝑦 ·N 𝑓)))
1716adantl 262 . . . . . . 7 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N𝑓N)) → ((𝑥 ·N 𝑦) ·N 𝑓) = (𝑥 ·N (𝑦 ·N 𝑓)))
18 simprrl 491 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐶N)
19 mulclpi 6426 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
2019adantl 262 . . . . . . 7 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) ∈ N)
2111, 12, 13, 15, 17, 18, 20caov4d 5685 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → ((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑧 ·N 𝐵) ·N (𝑢 ·N 𝐶)))
22 simpllr 486 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑤N)
23 simprll 489 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑣N)
24 simplrl 487 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐴N)
25 simprrr 492 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐷N)
2622, 23, 24, 15, 17, 25, 20caov4d 5685 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷)) = ((𝑤 ·N 𝐴) ·N (𝑣 ·N 𝐷)))
2721, 26eqeq12d 2054 . . . . 5 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷)) ↔ ((𝑧 ·N 𝐵) ·N (𝑢 ·N 𝐶)) = ((𝑤 ·N 𝐴) ·N (𝑣 ·N 𝐷))))
2810, 27syl5ibr 145 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (((𝑧 ·N 𝐵) = (𝑤 ·N 𝐴) ∧ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷)) → ((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷))))
299, 28sylbid 139 . . 3 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ∧ [⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ) → ((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷))))
30 ltmpig 6437 . . . . 5 ((𝑥N𝑦N𝑓N) → (𝑥 <N 𝑦 ↔ (𝑓 ·N 𝑥) <N (𝑓 ·N 𝑦)))
3130adantl 262 . . . 4 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N𝑓N)) → (𝑥 <N 𝑦 ↔ (𝑓 ·N 𝑥) <N (𝑓 ·N 𝑦)))
3220, 11, 12caovcld 5654 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝑧 ·N 𝑢) ∈ N)
3320, 13, 18caovcld 5654 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝐵 ·N 𝐶) ∈ N)
3420, 22, 23caovcld 5654 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝑤 ·N 𝑣) ∈ N)
3520, 24, 25caovcld 5654 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝐴 ·N 𝐷) ∈ N)
3631, 32, 33, 34, 15, 35caovord3d 5671 . . 3 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷)) → ((𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣) ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶))))
3729, 36syld 40 . 2 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ∧ [⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ) → ((𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣) ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶))))
381, 2, 3, 4, 37brecop 6196 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q <Q [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393  cop 3378   class class class wbr 3764  (class class class)co 5512  [cec 6104  Ncnpi 6370   ·N cmi 6372   <N clti 6373   ~Q ceq 6377  Qcnq 6378   <Q cltq 6383
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-mi 6404  df-lti 6405  df-enq 6445  df-nqqs 6446  df-ltnqqs 6451
This theorem is referenced by:  nqtri3or  6494  ltdcnq  6495  ltsonq  6496  ltanqg  6498  ltmnqg  6499  1lt2nq  6504  ltexnqq  6506  archnqq  6515  prarloclemarch2  6517  ltnnnq  6521  prarloclemlt  6591
  Copyright terms: Public domain W3C validator