ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-5 GIF version

Axiom ax-5 1336
Description: Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105.
Assertion
Ref Expression
ax-5 (x(φψ) → (xφxψ))

Detailed syntax breakdown of Axiom ax-5
StepHypRef Expression
1 wph . . . 4 wff φ
2 wps . . . 4 wff ψ
31, 2wi 4 . . 3 wff (φψ)
4 vx . . 3 set x
53, 4wal 1335 . 2 wff x(φψ)
61, 4wal 1335 . . 3 wff xφ
72, 4wal 1335 . . 3 wff xψ
86, 7wi 4 . 2 wff (xφxψ)
95, 8wi 4 1 wff (x(φψ) → (xφxψ))
Colors of variables: wff set class
This axiom is referenced by:  alimi  1345  alim  1347  hbequidOLD  1398  equidqeOLD  1420  ax4  1423  ax5o  1424  a5i  1437
  Copyright terms: Public domain W3C validator