MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpriindi Structured version   Visualization version   GIF version

Theorem xpriindi 5180
Description: Distributive law for Cartesian product over relativized indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
xpriindi (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem xpriindi
StepHypRef Expression
1 iineq1 4471 . . . . . . 7 (𝐴 = ∅ → 𝑥𝐴 𝐵 = 𝑥 ∈ ∅ 𝐵)
2 0iin 4514 . . . . . . 7 𝑥 ∈ ∅ 𝐵 = V
31, 2syl6eq 2660 . . . . . 6 (𝐴 = ∅ → 𝑥𝐴 𝐵 = V)
43ineq2d 3776 . . . . 5 (𝐴 = ∅ → (𝐷 𝑥𝐴 𝐵) = (𝐷 ∩ V))
5 inv1 3922 . . . . 5 (𝐷 ∩ V) = 𝐷
64, 5syl6eq 2660 . . . 4 (𝐴 = ∅ → (𝐷 𝑥𝐴 𝐵) = 𝐷)
76xpeq2d 5063 . . 3 (𝐴 = ∅ → (𝐶 × (𝐷 𝑥𝐴 𝐵)) = (𝐶 × 𝐷))
8 iineq1 4471 . . . . . 6 (𝐴 = ∅ → 𝑥𝐴 (𝐶 × 𝐵) = 𝑥 ∈ ∅ (𝐶 × 𝐵))
9 0iin 4514 . . . . . 6 𝑥 ∈ ∅ (𝐶 × 𝐵) = V
108, 9syl6eq 2660 . . . . 5 (𝐴 = ∅ → 𝑥𝐴 (𝐶 × 𝐵) = V)
1110ineq2d 3776 . . . 4 (𝐴 = ∅ → ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)) = ((𝐶 × 𝐷) ∩ V))
12 inv1 3922 . . . 4 ((𝐶 × 𝐷) ∩ V) = (𝐶 × 𝐷)
1311, 12syl6eq 2660 . . 3 (𝐴 = ∅ → ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)) = (𝐶 × 𝐷))
147, 13eqtr4d 2647 . 2 (𝐴 = ∅ → (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
15 xpindi 5177 . . 3 (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ (𝐶 × 𝑥𝐴 𝐵))
16 xpiindi 5179 . . . 4 (𝐴 ≠ ∅ → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
1716ineq2d 3776 . . 3 (𝐴 ≠ ∅ → ((𝐶 × 𝐷) ∩ (𝐶 × 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
1815, 17syl5eq 2656 . 2 (𝐴 ≠ ∅ → (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
1914, 18pm2.61ine 2865 1 (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wne 2780  Vcvv 3173  cin 3539  c0 3874   ciin 4456   × cxp 5036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-iin 4458  df-opab 4644  df-xp 5044  df-rel 5045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator