Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpima2 Structured version   Visualization version   GIF version

Theorem xpima2 5497
 Description: The image by a Cartesian product. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
xpima2 ((𝐴𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)

Proof of Theorem xpima2
StepHypRef Expression
1 xpima 5495 . 2 ((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵)
2 ifnefalse 4048 . 2 ((𝐴𝐶) ≠ ∅ → if((𝐴𝐶) = ∅, ∅, 𝐵) = 𝐵)
31, 2syl5eq 2656 1 ((𝐴𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ≠ wne 2780   ∩ cin 3539  ∅c0 3874  ifcif 4036   × cxp 5036   “ cima 5041 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051 This theorem is referenced by:  xpimasn  5498  ustuqtop1  21855  ustuqtop5  21859  brtrclfv2  37038  aacllem  42356
 Copyright terms: Public domain W3C validator