Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrecseq1 Structured version   Visualization version   GIF version

Theorem wrecseq1 7297
 Description: Equality theorem for the well-founded recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.)
Assertion
Ref Expression
wrecseq1 (𝑅 = 𝑆 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐴, 𝐹))

Proof of Theorem wrecseq1
StepHypRef Expression
1 eqid 2610 . 2 𝐴 = 𝐴
2 eqid 2610 . 2 𝐹 = 𝐹
3 wrecseq123 7295 . 2 ((𝑅 = 𝑆𝐴 = 𝐴𝐹 = 𝐹) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐴, 𝐹))
41, 2, 3mp3an23 1408 1 (𝑅 = 𝑆 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐴, 𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475  wrecscwrecs 7293 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-iota 5768  df-fv 5812  df-wrecs 7294 This theorem is referenced by:  csbrecsg  32350
 Copyright terms: Public domain W3C validator