Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sbnf1 Structured version   Visualization version   GIF version

Theorem wl-sbnf1 32515
 Description: Two ways expressing that 𝑥 is effectively not free in 𝜑. Simplified version of sbnf2 2427. Note: This theorem shows that sbnf2 2427 has unnecessary distinct variable constraints. (Contributed by Wolf Lammen, 28-Jul-2019.)
Assertion
Ref Expression
wl-sbnf1 (∀𝑥𝑦𝜑 → (Ⅎ𝑥𝜑 ↔ ∀𝑥𝑦(𝜑 → [𝑦 / 𝑥]𝜑)))

Proof of Theorem wl-sbnf1
StepHypRef Expression
1 nf5 2102 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
2 nfa1 2015 . . 3 𝑥𝑥𝑦𝜑
3 wl-sbhbt 32514 . . 3 (∀𝑥𝑦𝜑 → ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑)))
42, 3albid 2077 . 2 (∀𝑥𝑦𝜑 → (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥𝑦(𝜑 → [𝑦 / 𝑥]𝜑)))
51, 4syl5bb 271 1 (∀𝑥𝑦𝜑 → (Ⅎ𝑥𝜑 ↔ ∀𝑥𝑦(𝜑 → [𝑦 / 𝑥]𝜑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195  ∀wal 1473  Ⅎwnf 1699  [wsb 1867 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator