Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-equsb3 Structured version   Visualization version   GIF version

Theorem wl-equsb3 32516
 Description: equsb3 2420 with a distinctor. (Contributed by Wolf Lammen, 27-Jun-2019.)
Assertion
Ref Expression
wl-equsb3 (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑥 / 𝑦]𝑦 = 𝑧𝑥 = 𝑧))

Proof of Theorem wl-equsb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1830 . . 3 𝑤 ¬ ∀𝑦 𝑦 = 𝑧
2 nfna1 2016 . . . 4 𝑦 ¬ ∀𝑦 𝑦 = 𝑧
3 nfeqf2 2285 . . . 4 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦 𝑤 = 𝑧)
4 equequ1 1939 . . . . 5 (𝑦 = 𝑤 → (𝑦 = 𝑧𝑤 = 𝑧))
54a1i 11 . . . 4 (¬ ∀𝑦 𝑦 = 𝑧 → (𝑦 = 𝑤 → (𝑦 = 𝑧𝑤 = 𝑧)))
62, 3, 5sbied 2397 . . 3 (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑤 / 𝑦]𝑦 = 𝑧𝑤 = 𝑧))
71, 6sbbid 2391 . 2 (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑤]𝑤 = 𝑧))
8 sbcom3 2399 . . 3 ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑤][𝑥 / 𝑦]𝑦 = 𝑧)
9 nfv 1830 . . . 4 𝑤[𝑥 / 𝑦]𝑦 = 𝑧
109sbf 2368 . . 3 ([𝑥 / 𝑤][𝑥 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑦]𝑦 = 𝑧)
118, 10bitri 263 . 2 ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑦]𝑦 = 𝑧)
12 equsb3 2420 . 2 ([𝑥 / 𝑤]𝑤 = 𝑧𝑥 = 𝑧)
137, 11, 123bitr3g 301 1 (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑥 / 𝑦]𝑦 = 𝑧𝑥 = 𝑧))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195  ∀wal 1473  [wsb 1867 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator