MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcval Structured version   Visualization version   GIF version

Theorem uvcval 19943
Description: Value of a single unit vector in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcfval.u 𝑈 = (𝑅 unitVec 𝐼)
uvcfval.o 1 = (1r𝑅)
uvcfval.z 0 = (0g𝑅)
Assertion
Ref Expression
uvcval ((𝑅𝑉𝐼𝑊𝐽𝐼) → (𝑈𝐽) = (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )))
Distinct variable groups:   1 ,𝑘   𝑅,𝑘   𝑘,𝐼   0 ,𝑘   𝑘,𝐽
Allowed substitution hints:   𝑈(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem uvcval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 uvcfval.u . . . . 5 𝑈 = (𝑅 unitVec 𝐼)
2 uvcfval.o . . . . 5 1 = (1r𝑅)
3 uvcfval.z . . . . 5 0 = (0g𝑅)
41, 2, 3uvcfval 19942 . . . 4 ((𝑅𝑉𝐼𝑊) → 𝑈 = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
54fveq1d 6105 . . 3 ((𝑅𝑉𝐼𝑊) → (𝑈𝐽) = ((𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))‘𝐽))
653adant3 1074 . 2 ((𝑅𝑉𝐼𝑊𝐽𝐼) → (𝑈𝐽) = ((𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))‘𝐽))
7 simp3 1056 . . 3 ((𝑅𝑉𝐼𝑊𝐽𝐼) → 𝐽𝐼)
8 mptexg 6389 . . . 4 (𝐼𝑊 → (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) ∈ V)
983ad2ant2 1076 . . 3 ((𝑅𝑉𝐼𝑊𝐽𝐼) → (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) ∈ V)
10 eqeq2 2621 . . . . . 6 (𝑗 = 𝐽 → (𝑘 = 𝑗𝑘 = 𝐽))
1110ifbid 4058 . . . . 5 (𝑗 = 𝐽 → if(𝑘 = 𝑗, 1 , 0 ) = if(𝑘 = 𝐽, 1 , 0 ))
1211mpteq2dv 4673 . . . 4 (𝑗 = 𝐽 → (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )) = (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )))
13 eqid 2610 . . . 4 (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))
1412, 13fvmptg 6189 . . 3 ((𝐽𝐼 ∧ (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) ∈ V) → ((𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))‘𝐽) = (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )))
157, 9, 14syl2anc 691 . 2 ((𝑅𝑉𝐼𝑊𝐽𝐼) → ((𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))‘𝐽) = (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )))
166, 15eqtrd 2644 1 ((𝑅𝑉𝐼𝑊𝐽𝐼) → (𝑈𝐽) = (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  ifcif 4036  cmpt 4643  cfv 5804  (class class class)co 6549  0gc0g 15923  1rcur 18324   unitVec cuvc 19940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-uvc 19941
This theorem is referenced by:  uvcvval  19944
  Copyright terms: Public domain W3C validator