Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustex2sym Structured version   Visualization version   GIF version

Theorem ustex2sym 21830
 Description: In an uniform structure, for any entourage 𝑉, there exists a symmetrical entourage smaller than half 𝑉. (Contributed by Thierry Arnoux, 16-Jan-2018.)
Assertion
Ref Expression
ustex2sym ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑉))
Distinct variable groups:   𝑤,𝑈   𝑤,𝑉   𝑤,𝑋

Proof of Theorem ustex2sym
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simplll 794 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) → 𝑈 ∈ (UnifOn‘𝑋))
2 simplr 788 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) → 𝑣𝑈)
3 ustexsym 21829 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑣))
41, 2, 3syl2anc 691 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑣))
5 simprl 790 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑣)) → 𝑤 = 𝑤)
6 coss1 5199 . . . . . . . . 9 (𝑤𝑣 → (𝑤𝑤) ⊆ (𝑣𝑤))
7 coss2 5200 . . . . . . . . 9 (𝑤𝑣 → (𝑣𝑤) ⊆ (𝑣𝑣))
86, 7sstrd 3578 . . . . . . . 8 (𝑤𝑣 → (𝑤𝑤) ⊆ (𝑣𝑣))
98ad2antll 761 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑣)) → (𝑤𝑤) ⊆ (𝑣𝑣))
10 simpllr 795 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑣)) → (𝑣𝑣) ⊆ 𝑉)
119, 10sstrd 3578 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑣)) → (𝑤𝑤) ⊆ 𝑉)
125, 11jca 553 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑣)) → (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑉))
1312ex 449 . . . 4 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) → ((𝑤 = 𝑤𝑤𝑣) → (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑉)))
1413reximdva 3000 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) → (∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑣) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑉)))
154, 14mpd 15 . 2 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑉))
16 ustexhalf 21824 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑣𝑈 (𝑣𝑣) ⊆ 𝑉)
1715, 16r19.29a 3060 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑉))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃wrex 2897   ⊆ wss 3540  ◡ccnv 5037   ∘ ccom 5042  ‘cfv 5804  UnifOncust 21813 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812  df-ust 21814 This theorem is referenced by:  ustex3sym  21831
 Copyright terms: Public domain W3C validator