Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgrle | Structured version Visualization version GIF version |
Description: An edge of an undirected pseudograph has at most two ends. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
Ref | Expression |
---|---|
isupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isupgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgrle | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (#‘(𝐸‘𝐹)) ≤ 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isupgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | isupgr.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | upgrfn 25754 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) |
4 | 3 | ffvelrnda 6267 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) |
5 | 4 | 3impa 1251 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) |
6 | fveq2 6103 | . . . . 5 ⊢ (𝑥 = (𝐸‘𝐹) → (#‘𝑥) = (#‘(𝐸‘𝐹))) | |
7 | 6 | breq1d 4593 | . . . 4 ⊢ (𝑥 = (𝐸‘𝐹) → ((#‘𝑥) ≤ 2 ↔ (#‘(𝐸‘𝐹)) ≤ 2)) |
8 | 7 | elrab 3331 | . . 3 ⊢ ((𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ ((𝐸‘𝐹) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (#‘(𝐸‘𝐹)) ≤ 2)) |
9 | 8 | simprbi 479 | . 2 ⊢ ((𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → (#‘(𝐸‘𝐹)) ≤ 2) |
10 | 5, 9 | syl 17 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (#‘(𝐸‘𝐹)) ≤ 2) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 {crab 2900 ∖ cdif 3537 ∅c0 3874 𝒫 cpw 4108 {csn 4125 class class class wbr 4583 Fn wfn 5799 ‘cfv 5804 ≤ cle 9954 2c2 10947 #chash 12979 Vtxcvtx 25673 iEdgciedg 25674 UPGraph cupgr 25747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-upgr 25749 |
This theorem is referenced by: upgrfi 25758 upgrex 25759 upgrle2 25771 subupgr 40511 upgrewlkle2 40808 |
Copyright terms: Public domain | W3C validator |