Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrewlkle2 Structured version   Visualization version   GIF version

Theorem upgrewlkle2 40808
Description: In a pseudograph, there is no s-walk of edges of length greater than 1 with s>2. (Contributed by AV, 4-Jan-2021.)
Assertion
Ref Expression
upgrewlkle2 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 1 < (#‘𝐹)) → 𝑆 ≤ 2)

Proof of Theorem upgrewlkle2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
21ewlkprop 40805 . . 3 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
3 fvex 6113 . . . . . . . . . . 11 ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V
4 hashin 13060 . . . . . . . . . . 11 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V → (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (#‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))))
53, 4ax-mp 5 . . . . . . . . . 10 (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (#‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))
6 simpl3 1059 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → 𝐺 ∈ UPGraph )
7 upgruhgr 25768 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph )
81uhgrfun 25732 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺))
10 funfn 5833 . . . . . . . . . . . . . . 15 (Fun (iEdg‘𝐺) ↔ (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
119, 10sylib 207 . . . . . . . . . . . . . 14 (𝐺 ∈ UPGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
12113ad2ant3 1077 . . . . . . . . . . . . 13 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph ) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
1312adantr 480 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
14 simpl 472 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → 𝐹 ∈ Word dom (iEdg‘𝐺))
15 elfzofz 12354 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1..^(#‘𝐹)) → 𝑘 ∈ (1...(#‘𝐹)))
16 fz1fzo0m1 12383 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...(#‘𝐹)) → (𝑘 − 1) ∈ (0..^(#‘𝐹)))
1715, 16syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1..^(#‘𝐹)) → (𝑘 − 1) ∈ (0..^(#‘𝐹)))
1817adantl 481 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → (𝑘 − 1) ∈ (0..^(#‘𝐹)))
1914, 18jca 553 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (𝑘 − 1) ∈ (0..^(#‘𝐹))))
20 wrdsymbcl 13173 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (𝑘 − 1) ∈ (0..^(#‘𝐹))) → (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺))
2119, 20syl 17 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺))
22213ad2antl2 1217 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺))
23 eqid 2610 . . . . . . . . . . . . 13 (Vtx‘𝐺) = (Vtx‘𝐺)
2423, 1upgrle 25757 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ (𝐹‘(𝑘 − 1)) ∈ dom (iEdg‘𝐺)) → (#‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2)
256, 13, 22, 24syl3anc 1318 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → (#‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2)
263inex1 4727 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V
27 hashxrcl 13010 . . . . . . . . . . . . . . 15 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V → (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
2826, 27ax-mp 5 . . . . . . . . . . . . . 14 (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*
29 hashxrcl 13010 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V → (#‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ*)
303, 29ax-mp 5 . . . . . . . . . . . . . 14 (#‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ*
31 2re 10967 . . . . . . . . . . . . . . 15 2 ∈ ℝ
3231rexri 9976 . . . . . . . . . . . . . 14 2 ∈ ℝ*
3328, 30, 323pm3.2i 1232 . . . . . . . . . . . . 13 ((#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ (#‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ* ∧ 2 ∈ ℝ*)
3433a1i 11 . . . . . . . . . . . 12 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → ((#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ (#‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ* ∧ 2 ∈ ℝ*))
35 xrletr 11865 . . . . . . . . . . . 12 (((#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ (#‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∈ ℝ* ∧ 2 ∈ ℝ*) → (((#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (#‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∧ (#‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2) → (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2))
3634, 35syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → (((#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (#‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ∧ (#‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ≤ 2) → (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2))
3725, 36mpan2d 706 . . . . . . . . . 10 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → ((#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ (#‘((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2))
385, 37mpi 20 . . . . . . . . 9 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2)
39 xnn0xr 11245 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ0*𝑆 ∈ ℝ*)
4028a1i 11 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ0* → (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
4132a1i 11 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ0* → 2 ∈ ℝ*)
42 xrletr 11865 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ* ∧ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((𝑆 ≤ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∧ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2) → 𝑆 ≤ 2))
4339, 40, 41, 42syl3anc 1318 . . . . . . . . . . . . 13 (𝑆 ∈ ℕ0* → ((𝑆 ≤ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∧ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2) → 𝑆 ≤ 2))
4443expcomd 453 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0* → ((#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
4544adantl 481 . . . . . . . . . . 11 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ((#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
46453ad2ant1 1075 . . . . . . . . . 10 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph ) → ((#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
4746adantr 480 . . . . . . . . 9 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → ((#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ≤ 2 → (𝑆 ≤ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2)))
4838, 47mpd 15 . . . . . . . 8 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → (𝑆 ≤ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑆 ≤ 2))
4948ralimdva 2945 . . . . . . 7 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph ) → (∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ 2))
50493exp 1256 . . . . . 6 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐺 ∈ UPGraph → (∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ 2))))
5150com34 89 . . . . 5 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ 2))))
52513imp 1249 . . . 4 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ 2))
53 lencl 13179 . . . . . 6 (𝐹 ∈ Word dom (iEdg‘𝐺) → (#‘𝐹) ∈ ℕ0)
54 1zzd 11285 . . . . . . . . . . . . . . . . . 18 ((#‘𝐹) ∈ ℕ0 → 1 ∈ ℤ)
55 nn0z 11277 . . . . . . . . . . . . . . . . . 18 ((#‘𝐹) ∈ ℕ0 → (#‘𝐹) ∈ ℤ)
5654, 55jca 553 . . . . . . . . . . . . . . . . 17 ((#‘𝐹) ∈ ℕ0 → (1 ∈ ℤ ∧ (#‘𝐹) ∈ ℤ))
57 fzon 12358 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℤ ∧ (#‘𝐹) ∈ ℤ) → ((#‘𝐹) ≤ 1 ↔ (1..^(#‘𝐹)) = ∅))
5856, 57syl 17 . . . . . . . . . . . . . . . 16 ((#‘𝐹) ∈ ℕ0 → ((#‘𝐹) ≤ 1 ↔ (1..^(#‘𝐹)) = ∅))
5958bicomd 212 . . . . . . . . . . . . . . 15 ((#‘𝐹) ∈ ℕ0 → ((1..^(#‘𝐹)) = ∅ ↔ (#‘𝐹) ≤ 1))
60 nn0re 11178 . . . . . . . . . . . . . . . . 17 ((#‘𝐹) ∈ ℕ0 → (#‘𝐹) ∈ ℝ)
61 1red 9934 . . . . . . . . . . . . . . . . 17 ((#‘𝐹) ∈ ℕ0 → 1 ∈ ℝ)
6260, 61jca 553 . . . . . . . . . . . . . . . 16 ((#‘𝐹) ∈ ℕ0 → ((#‘𝐹) ∈ ℝ ∧ 1 ∈ ℝ))
63 lenlt 9995 . . . . . . . . . . . . . . . 16 (((#‘𝐹) ∈ ℝ ∧ 1 ∈ ℝ) → ((#‘𝐹) ≤ 1 ↔ ¬ 1 < (#‘𝐹)))
6462, 63syl 17 . . . . . . . . . . . . . . 15 ((#‘𝐹) ∈ ℕ0 → ((#‘𝐹) ≤ 1 ↔ ¬ 1 < (#‘𝐹)))
6559, 64bitrd 267 . . . . . . . . . . . . . 14 ((#‘𝐹) ∈ ℕ0 → ((1..^(#‘𝐹)) = ∅ ↔ ¬ 1 < (#‘𝐹)))
6665biimpd 218 . . . . . . . . . . . . 13 ((#‘𝐹) ∈ ℕ0 → ((1..^(#‘𝐹)) = ∅ → ¬ 1 < (#‘𝐹)))
6766necon2ad 2797 . . . . . . . . . . . 12 ((#‘𝐹) ∈ ℕ0 → (1 < (#‘𝐹) → (1..^(#‘𝐹)) ≠ ∅))
6867impcom 445 . . . . . . . . . . 11 ((1 < (#‘𝐹) ∧ (#‘𝐹) ∈ ℕ0) → (1..^(#‘𝐹)) ≠ ∅)
69 rspn0 3892 . . . . . . . . . . 11 ((1..^(#‘𝐹)) ≠ ∅ → (∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ 2 → 𝑆 ≤ 2))
7068, 69syl 17 . . . . . . . . . 10 ((1 < (#‘𝐹) ∧ (#‘𝐹) ∈ ℕ0) → (∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ 2 → 𝑆 ≤ 2))
7170ex 449 . . . . . . . . 9 (1 < (#‘𝐹) → ((#‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ 2 → 𝑆 ≤ 2)))
7271com23 84 . . . . . . . 8 (1 < (#‘𝐹) → (∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ 2 → ((#‘𝐹) ∈ ℕ0𝑆 ≤ 2)))
7372com13 86 . . . . . . 7 ((#‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ 2 → (1 < (#‘𝐹) → 𝑆 ≤ 2)))
7473a1i 11 . . . . . 6 (𝐹 ∈ Word dom (iEdg‘𝐺) → ((#‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ 2 → (1 < (#‘𝐹) → 𝑆 ≤ 2))))
7553, 74mpd 15 . . . . 5 (𝐹 ∈ Word dom (iEdg‘𝐺) → (∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ 2 → (1 < (#‘𝐹) → 𝑆 ≤ 2)))
76753ad2ant2 1076 . . . 4 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ 2 → (1 < (#‘𝐹) → 𝑆 ≤ 2)))
7752, 76syld 46 . . 3 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐺 ∈ UPGraph → (1 < (#‘𝐹) → 𝑆 ≤ 2)))
782, 77syl 17 . 2 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → (𝐺 ∈ UPGraph → (1 < (#‘𝐹) → 𝑆 ≤ 2)))
79783imp21 1269 1 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 1 < (#‘𝐹)) → 𝑆 ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cin 3539  c0 3874   class class class wbr 4583  dom cdm 5038  Fun wfun 5798   Fn wfn 5799  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816  *cxr 9952   < clt 9953  cle 9954  cmin 10145  2c2 10947  0cn0 11169  0*cxnn0 11240  cz 11254  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146  Vtxcvtx 25673  iEdgciedg 25674   UHGraph cuhgr 25722   UPGraph cupgr 25747   EdgWalks cewlks 40795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-uhgr 25724  df-upgr 25749  df-ewlks 40799
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator