Proof of Theorem tgss2
Step | Hyp | Ref
| Expression |
1 | | simpr 476 |
. . . . 5
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) → ∪ 𝐵 =
∪ 𝐶) |
2 | | uniexg 6853 |
. . . . . 6
⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) |
3 | 2 | adantr 480 |
. . . . 5
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) → ∪ 𝐵
∈ V) |
4 | 1, 3 | eqeltrrd 2689 |
. . . 4
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) → ∪ 𝐶
∈ V) |
5 | | uniexb 6866 |
. . . 4
⊢ (𝐶 ∈ V ↔ ∪ 𝐶
∈ V) |
6 | 4, 5 | sylibr 223 |
. . 3
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) → 𝐶 ∈ V) |
7 | | tgss3 20601 |
. . 3
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶))) |
8 | 6, 7 | syldan 486 |
. 2
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) →
((topGen‘𝐵) ⊆
(topGen‘𝐶) ↔
𝐵 ⊆
(topGen‘𝐶))) |
9 | | eltg2b 20574 |
. . . . . . 7
⊢ (𝐶 ∈ V → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥 ∈ 𝑦 ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))) |
10 | 6, 9 | syl 17 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥 ∈ 𝑦 ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))) |
11 | | elunii 4377 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ ∪ 𝐵) |
12 | 11 | ancoms 468 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ ∪ 𝐵) |
13 | | biimt 349 |
. . . . . . . 8
⊢ (𝑥 ∈ ∪ 𝐵
→ (∃𝑧 ∈
𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) ↔ (𝑥 ∈ ∪ 𝐵 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |
14 | 12, 13 | syl 17 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦) → (∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) ↔ (𝑥 ∈ ∪ 𝐵 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |
15 | 14 | ralbidva 2968 |
. . . . . 6
⊢ (𝑦 ∈ 𝐵 → (∀𝑥 ∈ 𝑦 ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) ↔ ∀𝑥 ∈ 𝑦 (𝑥 ∈ ∪ 𝐵 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |
16 | 10, 15 | sylan9bb 732 |
. . . . 5
⊢ (((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) ∧ 𝑦 ∈ 𝐵) → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥 ∈ 𝑦 (𝑥 ∈ ∪ 𝐵 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |
17 | | ralcom3 3084 |
. . . . 5
⊢
(∀𝑥 ∈
𝑦 (𝑥 ∈ ∪ 𝐵 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) ↔ ∀𝑥 ∈ ∪ 𝐵(𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))) |
18 | 16, 17 | syl6bb 275 |
. . . 4
⊢ (((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) ∧ 𝑦 ∈ 𝐵) → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥 ∈ ∪ 𝐵(𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |
19 | 18 | ralbidva 2968 |
. . 3
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) → (∀𝑦 ∈ 𝐵 𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ ∪ 𝐵(𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |
20 | | dfss3 3558 |
. . 3
⊢ (𝐵 ⊆ (topGen‘𝐶) ↔ ∀𝑦 ∈ 𝐵 𝑦 ∈ (topGen‘𝐶)) |
21 | | ralcom 3079 |
. . 3
⊢
(∀𝑥 ∈
∪ 𝐵∀𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ ∪ 𝐵(𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))) |
22 | 19, 20, 21 | 3bitr4g 302 |
. 2
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) → (𝐵 ⊆ (topGen‘𝐶) ↔ ∀𝑥 ∈ ∪ 𝐵∀𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |
23 | 8, 22 | bitrd 267 |
1
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) →
((topGen‘𝐵) ⊆
(topGen‘𝐶) ↔
∀𝑥 ∈ ∪ 𝐵∀𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |