MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgss2 Structured version   Visualization version   Unicode version

Theorem tgss2 20013
Description: A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgss2  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  ( ( topGen `
 B )  C_  ( topGen `  C )  <->  A. x  e.  U. B A. y  e.  B  ( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
Distinct variable groups:    x, y,
z, B    x, C, y, z    x, V, y
Allowed substitution hint:    V( z)

Proof of Theorem tgss2
StepHypRef Expression
1 simpr 467 . . . . 5  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  U. B  = 
U. C )
2 uniexg 6575 . . . . . 6  |-  ( B  e.  V  ->  U. B  e.  _V )
32adantr 471 . . . . 5  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  U. B  e. 
_V )
41, 3eqeltrrd 2530 . . . 4  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  U. C  e. 
_V )
5 uniexb 6588 . . . 4  |-  ( C  e.  _V  <->  U. C  e. 
_V )
64, 5sylibr 217 . . 3  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  C  e.  _V )
7 tgss3 20012 . . 3  |-  ( ( B  e.  V  /\  C  e.  _V )  ->  ( ( topGen `  B
)  C_  ( topGen `  C )  <->  B  C_  ( topGen `
 C ) ) )
86, 7syldan 477 . 2  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  ( ( topGen `
 B )  C_  ( topGen `  C )  <->  B 
C_  ( topGen `  C
) ) )
9 eltg2b 19984 . . . . . . 7  |-  ( C  e.  _V  ->  (
y  e.  ( topGen `  C )  <->  A. x  e.  y  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) )
106, 9syl 17 . . . . . 6  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  ( y  e.  ( topGen `  C )  <->  A. x  e.  y  E. z  e.  C  (
x  e.  z  /\  z  C_  y ) ) )
11 elunii 4172 . . . . . . . . 9  |-  ( ( x  e.  y  /\  y  e.  B )  ->  x  e.  U. B
)
1211ancoms 459 . . . . . . . 8  |-  ( ( y  e.  B  /\  x  e.  y )  ->  x  e.  U. B
)
13 biimt 341 . . . . . . . 8  |-  ( x  e.  U. B  -> 
( E. z  e.  C  ( x  e.  z  /\  z  C_  y )  <->  ( x  e.  U. B  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
1412, 13syl 17 . . . . . . 7  |-  ( ( y  e.  B  /\  x  e.  y )  ->  ( E. z  e.  C  ( x  e.  z  /\  z  C_  y )  <->  ( x  e.  U. B  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
1514ralbidva 2808 . . . . . 6  |-  ( y  e.  B  ->  ( A. x  e.  y  E. z  e.  C  ( x  e.  z  /\  z  C_  y )  <->  A. x  e.  y 
( x  e.  U. B  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
1610, 15sylan9bb 711 . . . . 5  |-  ( ( ( B  e.  V  /\  U. B  =  U. C )  /\  y  e.  B )  ->  (
y  e.  ( topGen `  C )  <->  A. x  e.  y  ( x  e.  U. B  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
17 ralcom3 2923 . . . . 5  |-  ( A. x  e.  y  (
x  e.  U. B  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) )  <->  A. x  e.  U. B ( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) )
1816, 17syl6bb 269 . . . 4  |-  ( ( ( B  e.  V  /\  U. B  =  U. C )  /\  y  e.  B )  ->  (
y  e.  ( topGen `  C )  <->  A. x  e.  U. B ( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
1918ralbidva 2808 . . 3  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  ( A. y  e.  B  y  e.  ( topGen `  C )  <->  A. y  e.  B  A. x  e.  U. B ( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
20 dfss3 3389 . . 3  |-  ( B 
C_  ( topGen `  C
)  <->  A. y  e.  B  y  e.  ( topGen `  C ) )
21 ralcom 2918 . . 3  |-  ( A. x  e.  U. B A. y  e.  B  (
x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) )  <->  A. y  e.  B  A. x  e.  U. B
( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) )
2219, 20, 213bitr4g 296 . 2  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  ( B  C_  ( topGen `  C )  <->  A. x  e.  U. B A. y  e.  B  ( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
238, 22bitrd 261 1  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  ( ( topGen `
 B )  C_  ( topGen `  C )  <->  A. x  e.  U. B A. y  e.  B  ( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1447    e. wcel 1890   A.wral 2736   E.wrex 2737   _Vcvv 3012    C_ wss 3371   U.cuni 4167   ` cfv 5560   topGenctg 15346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1672  ax-4 1685  ax-5 1761  ax-6 1808  ax-7 1854  ax-8 1892  ax-9 1899  ax-10 1918  ax-11 1923  ax-12 1936  ax-13 2091  ax-ext 2431  ax-sep 4496  ax-nul 4505  ax-pow 4553  ax-pr 4611  ax-un 6570
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 988  df-tru 1450  df-ex 1667  df-nf 1671  df-sb 1801  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2623  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3014  df-sbc 3235  df-dif 3374  df-un 3376  df-in 3378  df-ss 3385  df-nul 3699  df-if 3849  df-pw 3920  df-sn 3936  df-pr 3938  df-op 3942  df-uni 4168  df-iun 4249  df-br 4374  df-opab 4433  df-mpt 4434  df-id 4726  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-iota 5524  df-fun 5562  df-fv 5568  df-topgen 15352
This theorem is referenced by:  metss  21533  relowlssretop  31767  relowlpssretop  31768
  Copyright terms: Public domain W3C validator