MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglngval Structured version   Visualization version   GIF version

Theorem tglngval 25246
Description: The line going through points 𝑋 and 𝑌. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tglngval.z (𝜑𝑋𝑌)
Assertion
Ref Expression
tglngval (𝜑 → (𝑋𝐿𝑌) = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
Distinct variable groups:   𝑧,𝐺   𝑧,𝐼   𝑧,𝑃   𝑧,𝑋   𝑧,𝑌   𝜑,𝑧
Allowed substitution hint:   𝐿(𝑧)

Proof of Theorem tglngval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglngval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
2 tglngval.p . . . . 5 𝑃 = (Base‘𝐺)
3 tglngval.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglngval.i . . . . 5 𝐼 = (Itv‘𝐺)
52, 3, 4tglng 25241 . . . 4 (𝐺 ∈ TarskiG → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
61, 5syl 17 . . 3 (𝜑𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
76oveqd 6566 . 2 (𝜑 → (𝑋𝐿𝑌) = (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})𝑌))
8 tglngval.x . . 3 (𝜑𝑋𝑃)
9 tglngval.y . . . 4 (𝜑𝑌𝑃)
10 tglngval.z . . . . 5 (𝜑𝑋𝑌)
1110necomd 2837 . . . 4 (𝜑𝑌𝑋)
12 eldifsn 4260 . . . 4 (𝑌 ∈ (𝑃 ∖ {𝑋}) ↔ (𝑌𝑃𝑌𝑋))
139, 11, 12sylanbrc 695 . . 3 (𝜑𝑌 ∈ (𝑃 ∖ {𝑋}))
14 fvex 6113 . . . . . 6 (Base‘𝐺) ∈ V
152, 14eqeltri 2684 . . . . 5 𝑃 ∈ V
1615rabex 4740 . . . 4 {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ∈ V
1716a1i 11 . . 3 (𝜑 → {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ∈ V)
18 oveq12 6558 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐼𝑦) = (𝑋𝐼𝑌))
1918eleq2d 2673 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑌)))
20 simpl 472 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
21 simpr 476 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
2221oveq2d 6565 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧𝐼𝑦) = (𝑧𝐼𝑌))
2320, 22eleq12d 2682 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑌)))
2420oveq1d 6564 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
2521, 24eleq12d 2682 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
2619, 23, 253orbi123d 1390 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
2726rabbidv 3164 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
28 sneq 4135 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2928difeq2d 3690 . . . 4 (𝑥 = 𝑋 → (𝑃 ∖ {𝑥}) = (𝑃 ∖ {𝑋}))
30 eqid 2610 . . . 4 (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
3127, 29, 30ovmpt2x 6687 . . 3 ((𝑋𝑃𝑌 ∈ (𝑃 ∖ {𝑋}) ∧ {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ∈ V) → (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})𝑌) = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
328, 13, 17, 31syl3anc 1318 . 2 (𝜑 → (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})𝑌) = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
337, 32eqtrd 2644 1 (𝜑 → (𝑋𝐿𝑌) = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3o 1030   = wceq 1475  wcel 1977  wne 2780  {crab 2900  Vcvv 3173  cdif 3537  {csn 4125  cfv 5804  (class class class)co 6549  cmpt2 6551  Basecbs 15695  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-trkg 25152
This theorem is referenced by:  tglnssp  25247  tgellng  25248  tgisline  25322
  Copyright terms: Public domain W3C validator