Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrexf Structured version   Visualization version   GIF version

Theorem ssrexf 3628
 Description: restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
ssrexf.1 𝑥𝐴
ssrexf.2 𝑥𝐵
Assertion
Ref Expression
ssrexf (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))

Proof of Theorem ssrexf
StepHypRef Expression
1 ssrexf.1 . . . 4 𝑥𝐴
2 ssrexf.2 . . . 4 𝑥𝐵
31, 2nfss 3561 . . 3 𝑥 𝐴𝐵
4 ssel 3562 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
54anim1d 586 . . 3 (𝐴𝐵 → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
63, 5eximd 2072 . 2 (𝐴𝐵 → (∃𝑥(𝑥𝐴𝜑) → ∃𝑥(𝑥𝐵𝜑)))
7 df-rex 2902 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
8 df-rex 2902 . 2 (∃𝑥𝐵 𝜑 ↔ ∃𝑥(𝑥𝐵𝜑))
96, 7, 83imtr4g 284 1 (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∃wex 1695   ∈ wcel 1977  Ⅎwnfc 2738  ∃wrex 2897   ⊆ wss 3540 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-in 3547  df-ss 3554 This theorem is referenced by:  iunxdif3  4542  stoweidlem34  38927
 Copyright terms: Public domain W3C validator