Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssrexf Structured version   Unicode version

Theorem ssrexf 31281
Description: restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
ssrexf.1  |-  F/_ x A
ssrexf.2  |-  F/_ x B
Assertion
Ref Expression
ssrexf  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph 
->  E. x  e.  B  ph ) )

Proof of Theorem ssrexf
StepHypRef Expression
1 ssrexf.1 . . . 4  |-  F/_ x A
2 ssrexf.2 . . . 4  |-  F/_ x B
31, 2nfss 3502 . . 3  |-  F/ x  A  C_  B
4 ssel 3503 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
54anim1d 564 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  ->  (
x  e.  B  /\  ph ) ) )
63, 5eximd 1830 . 2  |-  ( A 
C_  B  ->  ( E. x ( x  e.  A  /\  ph )  ->  E. x ( x  e.  B  /\  ph ) ) )
7 df-rex 2823 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
8 df-rex 2823 . 2  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
96, 7, 83imtr4g 270 1  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph 
->  E. x  e.  B  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   E.wex 1596    e. wcel 1767   F/_wnfc 2615   E.wrex 2818    C_ wss 3481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2822  df-rex 2823  df-in 3488  df-ss 3495
This theorem is referenced by:  stoweidlem34  31648
  Copyright terms: Public domain W3C validator