Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssrexf Unicode version

Theorem ssrexf 27551
Description: restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
ssrexf.1  |-  F/_ x A
ssrexf.2  |-  F/_ x B
Assertion
Ref Expression
ssrexf  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph 
->  E. x  e.  B  ph ) )

Proof of Theorem ssrexf
StepHypRef Expression
1 ssrexf.1 . . . 4  |-  F/_ x A
2 ssrexf.2 . . . 4  |-  F/_ x B
31, 2nfss 3301 . . 3  |-  F/ x  A  C_  B
4 ssel 3302 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
54anim1d 548 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  ->  (
x  e.  B  /\  ph ) ) )
63, 5eximd 1782 . 2  |-  ( A 
C_  B  ->  ( E. x ( x  e.  A  /\  ph )  ->  E. x ( x  e.  B  /\  ph ) ) )
7 df-rex 2672 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
8 df-rex 2672 . 2  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
96, 7, 83imtr4g 262 1  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph 
->  E. x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1547    e. wcel 1721   F/_wnfc 2527   E.wrex 2667    C_ wss 3280
This theorem is referenced by:  stoweidlem34  27650
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ral 2671  df-rex 2672  df-in 3287  df-ss 3294
  Copyright terms: Public domain W3C validator