Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snsslVD Structured version   Visualization version   GIF version

Theorem snsslVD 38086
Description: Virtual deduction proof of snssl 38087. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
snsslVD.1 𝐴 ∈ V
Assertion
Ref Expression
snsslVD ({𝐴} ⊆ 𝐵𝐴𝐵)

Proof of Theorem snsslVD
StepHypRef Expression
1 idn1 37811 . . 3 (   {𝐴} ⊆ 𝐵   ▶   {𝐴} ⊆ 𝐵   )
2 snsslVD.1 . . . 4 𝐴 ∈ V
32snid 4155 . . 3 𝐴 ∈ {𝐴}
4 ssel2 3563 . . 3 (({𝐴} ⊆ 𝐵𝐴 ∈ {𝐴}) → 𝐴𝐵)
51, 3, 4e10an 37941 . 2 (   {𝐴} ⊆ 𝐵   ▶   𝐴𝐵   )
65in1 37808 1 ({𝐴} ⊆ 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1977  Vcvv 3173  wss 3540  {csn 4125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-in 3547  df-ss 3554  df-sn 4126  df-vd1 37807
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator