Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snsslVD Structured version   Unicode version

Theorem snsslVD 34048
Description: Virtual deduction proof of snssl 34049. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
snsslVD.1  |-  A  e. 
_V
Assertion
Ref Expression
snsslVD  |-  ( { A }  C_  B  ->  A  e.  B )

Proof of Theorem snsslVD
StepHypRef Expression
1 idn1 33764 . . 3  |-  (. { A }  C_  B  ->.  { A }  C_  B ).
2 snsslVD.1 . . . 4  |-  A  e. 
_V
32snid 4044 . . 3  |-  A  e. 
{ A }
4 ssel2 3484 . . 3  |-  ( ( { A }  C_  B  /\  A  e.  { A } )  ->  A  e.  B )
51, 3, 4e10an 33894 . 2  |-  (. { A }  C_  B  ->.  A  e.  B ).
65in1 33761 1  |-  ( { A }  C_  B  ->  A  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1823   _Vcvv 3106    C_ wss 3461   {csn 4016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3108  df-in 3468  df-ss 3475  df-sn 4017  df-vd1 33760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator