MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sneqrgOLD Structured version   Visualization version   GIF version

Theorem sneqrgOLD 4313
Description: Obsolete proof of sneqrg 4310 as of 23-Jul-2021. (Contributed by Scott Fenton, 1-Apr-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sneqrgOLD (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))

Proof of Theorem sneqrgOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4135 . . . 4 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21eqeq1d 2612 . . 3 (𝑥 = 𝐴 → ({𝑥} = {𝐵} ↔ {𝐴} = {𝐵}))
3 eqeq1 2614 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
42, 3imbi12d 333 . 2 (𝑥 = 𝐴 → (({𝑥} = {𝐵} → 𝑥 = 𝐵) ↔ ({𝐴} = {𝐵} → 𝐴 = 𝐵)))
5 vex 3176 . . 3 𝑥 ∈ V
65sneqr 4311 . 2 ({𝑥} = {𝐵} → 𝑥 = 𝐵)
74, 6vtoclg 3239 1 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  {csn 4125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-sn 4126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator