Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sneqrgOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of sneqrg 4310 as of 23-Jul-2021. (Contributed by Scott Fenton, 1-Apr-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sneqrgOLD | ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4135 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | eqeq1d 2612 | . . 3 ⊢ (𝑥 = 𝐴 → ({𝑥} = {𝐵} ↔ {𝐴} = {𝐵})) |
3 | eqeq1 2614 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
4 | 2, 3 | imbi12d 333 | . 2 ⊢ (𝑥 = 𝐴 → (({𝑥} = {𝐵} → 𝑥 = 𝐵) ↔ ({𝐴} = {𝐵} → 𝐴 = 𝐵))) |
5 | vex 3176 | . . 3 ⊢ 𝑥 ∈ V | |
6 | 5 | sneqr 4311 | . 2 ⊢ ({𝑥} = {𝐵} → 𝑥 = 𝐵) |
7 | 4, 6 | vtoclg 3239 | 1 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 {csn 4125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-sn 4126 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |