 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sneqrg Structured version   Visualization version   GIF version

Theorem sneqrg 4310
 Description: Closed form of sneqr 4311. (Contributed by Scott Fenton, 1-Apr-2011.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
sneqrg (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))

Proof of Theorem sneqrg
StepHypRef Expression
1 snidg 4153 . . 3 (𝐴𝑉𝐴 ∈ {𝐴})
2 eleq2 2677 . . 3 ({𝐴} = {𝐵} → (𝐴 ∈ {𝐴} ↔ 𝐴 ∈ {𝐵}))
31, 2syl5ibcom 234 . 2 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 ∈ {𝐵}))
4 elsng 4139 . 2 (𝐴𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
53, 4sylibd 228 1 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  {csn 4125 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-sn 4126 This theorem is referenced by:  sneqr  4311  sneqbg  4314  altopth1  31242  altopth2  31243
 Copyright terms: Public domain W3C validator